Œ¤‹†‹ÆÑ

Še˜_•¶‚Ìpdfƒtƒ@ƒCƒ‹‚ÍCŠeŠw‰ï‚̃|ƒŠƒV[‚É]‚Á‚ÄŒfÚ‚µ‚Ä‚¢‚Ü‚·DÔ‚Ì( )‚Í2019”N‚ÌCitation index (Google Scholar), ‘‡Œv‚Í–ñ13100Œ)‚Å‚·D

ŠwpŽGŽ˜_•¶

1.     Y. Kokubun, T. Baba and K. Iga, gSilicon optical printed circuit board for three-dimensional integrated opticsh, Electron. Lett., vol. 21, no. 11, pp. 508-509, 1985. (21) pdf

2.     Y. Kokubun, T. Baba, T. Sakaki and K. Iga, gLow loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength regionh, Electron. Lett., vol. 22, no. 22, pp. 892-893, 1986. (69) pdf

3.     T. Baba, Y. Kokubun, T. Sakaki and K. Iga, gLoss reduction of an ARROW waveguide in shorter wavelength and its stack configurationh, J. Lightwave Technol., vol. LT-6, no. 9, pp. 1440-1445, 1988. (123)  pdf

4.     T. Baba and Y. Kokubun, gNew polarization-insensitive antiresonant reflecting optical waveguide (ARROW-B)h, IEEE Photon. Technol. Lett., vol. 1, no. 8, pp. 232-234, 1989. (55) pdf

5.     T. Baba, Y. Kokubun and H. Watanabe, gMonolithic integration of ARROW-type demultiplexer and photodetector in shorter wavelength regionh, J. Lightwave Technol., vol. LT-8, no. 1, pp. 99-104, 1990. (59)  pdf

6.     T. Baba, S. Tamura, Y. Kokubun and S. Watanabe, gMonolithic integration of multilayer filter on vertical surface of semiconductor substrate by a bias-sputtering techniqueh, IEEE Photon. Technol. Lett., vol. 2, no. 3, pp. 191-193, 1990. (12) pdf

7.     T. Baba and Y. Kokubun, gHigh efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using anti-reflecting layerh, Appl. Opt., vol. 29, no. 18, pp. 2781-2792, 1990. (46) pdf

8.     T. Baba and Y. Kokubun, gScattering loss of antiresonant reflecting optical waveguidesh, J. Lightwave Technol., vol. 9, no. 5, pp. 590-597, 1991. (10) pdf

9.     T. Baba, T. Hamano, F. Koyama and K. Iga, gSpontaneous emission factor of a microcavity DBR surface emitting laserh, IEEE J. Quantum Electron., vol. 27, no. 6, pp. 1347-1358, 1991. (330, “¯Ž—ð‘ã90ˆÊ)  pdf

10.  M. Shimizu, T. Mukaihara, T. Baba and K. Iga, gA method of polarization stabilization in surface emitting lasersh, Jpn. J. Appl. Phys., vol. 30, no. 6A, pp. L1015-L1017, 1991. (16) pdf

11.  T. Baba, T. Hamano, F. Koyama and K. Iga, gSpontaneous emission factor of a microcavity DBR surface emitting laser (II) --- effect of electron quantum confinements ---h, IEEE J. Quantum Electron., vol. 28, no. 5, pp. 1310-1319, 1992. (62)  pdf

12.  A. Sasaki, T. Baba and K. Iga, gFocusing characteristics of convex-shaped distributed-index microlensh, Jpn. J. Appl. Phys., vol. 31, no. 5B, pp. 1611-1617, 1992. (8) pdf

13.  K. Murashige, A. Akiba, T. Baba and K. Iga, gParallel optical Walsh expansion in a pattern recognition preprocessor using planar microlens arrayh, Jpn. J. Appl. Phys., vol. 31, no. 5B, pp. 1666-1671, 1992. (4) pdf

14.  T. Baba and Y. Kokubun, gDispersion and radiation loss characteristics of antiresonant reflecting optical waveguides --- numerical analysis and approximate expressions ---h, IEEE J. Quantum Electron., vol. 28, no. 7, pp. 1689-1700, 1992. (160)  pdf

15.  S. Tamura, T. Baba and Y. Kokubun, gSelective formation of dielectric film on vertical surface for photonic integrated circuitsh, IEEE J. Quantum Electron., vol. 28, no. 7, pp. 1727-1731, 1992. (3) pdf

16.  A. Sasaki, T. Baba and K. Iga, gPut-in micro-connectors for alignment-free coupling of optical fiber arraysh, IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 908-911, 1992. (32) pdf

17.  D. Intani, T. Baba and K. Iga, gPlanar microlens relay optics utilizing lateral focusingh, Appl. Opt., vol. 31, no. 25, pp. 5255-5258, 1992. (10) pdf

18.  T. Baba, K. Suzuki, Y. Yogo, K. Iga and F. Koyama, gThreshold reduction of GaInAsP/InP circular buried heterostructure surface emitting laser by a single step PBH regrowthh, Electron. Lett., vol. 29, no. 4, pp. 331-332, 1993. (13) pdf

19.  T. Baba, K. Matsuoka, F. Koyama and K. Iga, gA low threshold 1.3 mm GaInAsP/InP flat-surface circular buried heterostructure surface emitting laserh, Jpn. J. Appl. Phys., vol. 32, no. 3A, pp. 1126-1127, 1993. (7) pdf

20.  T. Baba, Y. Yogo, K. Suzuki, F. Koyama and K. Iga, gNear room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laserh, Electron. Lett., vol. 29, no. 9, pp. 913-914, 1993. (176) pdf

21.  T. Baba, Y. Yogo, K. Suzuki, K. Iga and F. Koyama, gGaInAsP/InP low-mesa CPBH surface emitting laser with an optimally deposited MgO/Si multilayer laser mirrorh, Jpn. J. Appl. Phys., vol. 32, no. 6A, pp. 2692-2694, 1993. (1) pdf

22.  T. Baba, K. Suzuki, Y. Yogo, K. Iga and F. Koyama, gLow threshold room temperature pulsed and 57ºC cw operations of 1.3 mm GaInAsP/InP circular planar buried heterostructure surface emitting lasersh, IEEE Photon. Technol. Lett., vol. 5, no. 7, pp. 744-746, 1993. (5)  pdf

23.  S. Asakawa, Y. Kokubun, M. Ohyama and T. Baba, gThree-dimensional optical inter-connects by stacked ARROW waveguidesh, Electron. Lett., vol. 29, no. 16, pp. 1485-1486, 1993. (24) pdf

24.  ²X–ØÊŽqC”nêr•FCˆÉ‰êŒ’ˆê, gƒvƒbƒ`ƒ“ƒ}ƒCƒNƒƒRƒlƒNƒ^‚É‚æ‚鎩“±ŒõŒ‹‡–@h, ŒõŠw, vol. 22, no. 8, pp. 477-481, 1993. pdf

25.  T. Baba, Y. Yogo, K. Suzuki, F. Koyama and K. Iga, gFirst room temperature cw operation of GaInAsP/InP surface emitting laserh, IEICE Trans. Electron., vol. E76-C, no. 9, pp. 1423-1424, 1993. (24) pdf

26.  ”nêr•FC—]‹½K–¾C—é–ØŽ¹C¬ŽR“ñŽO•vCˆÉ‰êŒ’ˆê, g’Ⴕ‚«‚¢’l1.3mm‘Ñ•½’R‰~Œ`–„‚ßž‚Ý\‘¢–Ê”­ŒõƒŒ[ƒUh, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J76-C, no. 10, pp. 367-374, 1993. pdf

27.  T. Mukaihara, N. Ohnoki, T. Baba, F. Koyama and K. Iga, gA novel birefringent distributed Bragg reflector using a metal/dielectric polarizer for polarization control of surface-emitting lasersh, Jpn. J. Appl. Phys., vol. 33, no. 2B, pp. L227-L229, 1994. (40) pdf

28.  T. Baba, Y. Yogo, K. Suzuki, F. Koyama and K. Iga, gContinuous wave GaInAsP/InP surface emitting laser with a thermally conductive MgO/Si multilayer mirrorh, Jpn. J. Appl. Phys., vol. 33, no. 4A, pp. 1905-1909, 1994. (18) pdf

29.  D. Intani, T. Baba and K. Iga, gSimple optical wavelength-division multiplexer component that uses the lateral focusing scheme of a planar microlensh, Appl. Opt., vol. 33, no. 16, pp. 3405-3408, 1994. (5) pdf

30.  •l–ì“NŽqC”nêr•FCˆÉ‰êŒ’ˆê, g‹É”÷‹¤UŠí’†–Ê”­ŒõƒŒ[ƒU‚É‚¨‚¯‚é‹«ŠEðŒ‚̈Ⴂ‚É‚æ‚鎩‘R•úo‚ÆŒõo—͂̕ω»h, “dŽqî•ñ’ÊMŠw‰ï˜_•¶ŽCvol. J78-C-I, no. 2, pp. 80-87, 1995. (1) pdf

31.  T. Baba and M. Koma, gPossibility of InP-based 2-dimensional photonic crystal --- an approach by anodization technique ---h, Jpn. J. Appl. Phys., vol. 34, no. 2B, pp. 1405-1408, 1995. (41) pdf

32.  T. Baba, Y. Yogo, K. Suzuki, T. Kondo, F. Koyama and K. Iga, gVertical cavity surface emitting laser array for 1.3 mm range parallel optical fiber transmissionsh, IEICE Trans. Electrons., vol. E77-C, no. 2, pp. 201-203, 1995. (3) pdf

33.  T. Baba, T. Kondo, F. Koyama and K. Iga, gFinite element analysis of thermal characteristics in continuous wave long wavelength surface emitting lasers (I) --- dielectric cavity structures---h, Opt. Rev., vol. 2, no. 2, pp. 123-127, 1995. (7) pdf

34.  T. Baba, T. Kondo, F. Koyama and K. Iga, gFinite element analysis of thermal characteristics in continuous wave long wavelength surface emitting laser (II) --- semiconductor cavity structures ---h, Opt. Rev., vol. 2, no. 4, pp. 323-325, 1995. (4) pdf

35.  T. Baba and T. Matsuzaki, gTheoretical calculation of photonic gap in semiconductor 2-dimensional photonic band structures with various shapes of optical atomsh, Jpn. J. Appl. Phys., vol. 34, no. 8B, pp. 4496-4498, 1995. (32) pdf

36.  T. Baba and T. Matsuzaki, gPolarization change in spontaneous emission from GaInAsP/InP 2-dimensional photonic crystalsh, Electron. Lett., vol. 31, no. 20, pp. 1776-1778, 1995. (31) pdf 

37.  T. Baba, R. Watanabe, K. Asano, F. Koyama and K. Iga, gTheoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirrorh, Jpn. J. Appl. Phys., vol. 35, no. 1A, pp. 97-100, 1996. (47) pdf

38.  T. Baba and T. Matsuzaki, gFabrication and photoluminescence studies of GaInAsP/InP 2-dimensional photonic crystalsh, Jpn. J. Appl. Phys., vol. 35, no. 2B, pp. 1348-1352, 1996. (67)  pdf

39.  T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung, A. Matsutani, T. Mukaihara, F. Koyama and K. Iga, gA novel short cavity laser with deep grating distributed Bragg reflectorsh, Jpn. J. Appl. Phys., vol. 35, no. 2B, pp. 1390-1394, 1996. (113)  pdf

40.  ”nêr•FC¼è’m”üC_àV®‹vC’r“c[‹M, gGaInAsP/InP 2ŽŸŒ³ƒtƒHƒgƒjƒbƒNŒ‹»h, ŒõŠw, vol. 25, no. 7, pp. 409-415, 1996. pdf

41.  T. Baba, N. Kamizawa and M. Ikeda, gNanofabrication process of GaInAsP/InP 2D photonic crystals by a methane-based reactive ion beam etching techniqueh, Physica B: Condensed Matter, vol. 227, pp. 415-418, 1996. (18) pdf

42.  T. Baba, gPhotonic crystals and microdisk cavities based on GaInAsP/InP systemh, IEEE J. Sel. Top. in Quantum Electron., vol. 3, no. 3, pp. 808-830, 1997. (302, “¯Ž—ð‘ã32ˆÊ)  pdf

43.  T. Baba, M. Fujita, A. Sakai, M. Kihara and R. Watanabe, gLasing characteristics of GaInAsP/InP strained quantum-well microdisk injection lasers with diameter of 2--10 mmh, IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 878-880, 1997. (177)  pdf

44.  A. Sakai, H. Yamada, M. Fujita and T. Baba, gProposal of optical near field probe using evanescent field of microdisk lasersh, Jpn. J. Appl. Phys., vol. 37, no. 2A, pp. 517-521, 1998. (11)  pdf

45.  M. Fujita, K. Inoshita and T. Baba, gRoom temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laserh, Electron. Lett., vol. 25, no. 3, pp. 278-279, 1998. (55) pdf

46.  H. Yamada, A. Sakai, M. Fujita and T. Baba, gOptical near field probe action in a microdisk injection laser with 0.12l resolutionh, Electron. Lett., vol. 35, no. 3, pp. 222-223, 1999. (9)  pdf

47.  T. Baba, N. Fukaya and J. Yonekura, gObservation of light propagation in photonic crystal waveguides with bendsh, Electron. Lett., vol. 35, no. 8, pp. 654-655, 1999. (404, “¯Ž—ð‘ã25ˆÊ)  pdf

48.  M. Fujita, A. Sakai and T. Baba, gUltra-small and ultra-low threshold microdisk injection laser --- design, fabrication, lasing characteristics and spontaneous emission factorh, IEEE J. Sel. Top. in Quantum Electron., vol. 5, no. 6, pp. 673-681, 1999. (220) pdf

49.  A. Sakai and T. Baba, gFDTD simulation of photonic devices and circuits based on circular and fan-shaped disksh, J. Lightwave Technol., vol. 17, no. 8, pp. 1493-1499, 1999. (64) pdf

50.  J. Yonekura, M. Ikeda and T. Baba, gAnalysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix methodh, J. Lightwave Technol., vol. 18, no. 8, pp. 1500-1508, 1999. (218)  pdf

51.  T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A. Matsutani, T. Miyamoto, F. Koyama and K. Iga, gStrong enhancement of light extraction efficiency in GaInAsP 2-D photonic crystals of columnsh, J. Lightwave Technol., vol. 17, no. 11, pp. 2113-2120, 1999. (114) pdf

52.  M. Fujita, R. Ushigome and T. Baba, gContinuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 mAh, Electron. Lett., vol. 36, no. 9, pp. 790-791, 2000. (224)  pdf

53.  N. Fukaya, D. Ohsaki and T. Baba, gTwo-dimensional photonic crystal waveguides with 60º bends in a thin slab structureh, Jpn. J. Appl. Phys., vol. 39, no. 5A, pp. 2619-2623, 2000. (60) pdf

54.  M. Ariga, Y. Sekido and T. Baba, gLow threshold GaInAsP lasers with semiconductor/air DBR fabricated by inductively coupled plasma etchingh, Jpn. J. Appl. Phys., vol. 39, no. 6A, pp. 3406-3409, 2000. (36) pdf

55.  T. Baba, H. Yamada and A. Sakai, gDirect observation of lasing mode in a microdisk laser by a near-field-probing techniqueh, Appl. Phys. Lett., vol. 77, no. 11, pp. 1584-1586, 2000. (11)  pdf

56.  T. Baba and N. Fukaya, gLight propagation characteristics of defect waveguides in a photonic crystal slabh, Photonic Crystals and Light Localization (Ed. M. Soukoulis), pp. 105-116, Kluwer Academic, 2001. (16)

57.  H. Ichikawa, K. Inoshita and T. Baba, gReduction in surface recombination of GaInAsP/InP microcolumns by CH4 plasma irradiationh, Appl. Phys. Lett., vol. 78, no. 15, pp. 2119-2121, 2001. (38)  pdf

58.  A. Sakai, G. Hara and T. Baba, gPropagation characteristics of ultra-high D optical waveguide on silicon-on-insulator substrateh, Jpn. J. Appl. Phys., vol. 40, no. 4B, pp. L383-L385, 2001. (204)  pdf

59.  M. Fujita, R. Ushigome and T. Baba, gLarge spontaneous emission factor of 0.1 in a microdisk injection laserh, IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 403-405, 2001. (65) pdf 

60.  T. Baba, N. Fukaya and A. Motegi, gClear correspondence between theoretical and experimental light propagation characteristics in photonic crystal waveguidesh, Electron. Lett., vol. 37, no. 12, pp. 761-762, 2001. (62) pdf 

61.  M. Fujita, K. Teshima and T. Baba, gLow threshold continuous wave lasing in photo-pumped GaInAsP microdisk lasersh, Jpn. J. Appl. Phys., vol. 40, no.8B, pp. L875 - L877, 2001. (19) pdf

62.  M. Fujita, R. Ushigome, T. Baba, A. Matsutani, F. Koyama and K. Iga, gGaInAsP microcylinder (microdisk) injection laser with AlInAs(Ox) claddingsh, Jpn. J. Appl. Phys., vol. 40, no. 9A, pp. 5338-5339, 2001. (13)  pdf

63.  T. Baba and D. Ohsaki, gInterfaces of photonic crystals for high efficiency light transmissionh, Jpn. J. Appl. Phys., vol. 40, no. 10, pp. 5920-5924, 2001. (102)  pdf

64.  M. Fujita and T. Baba, gProposal and FDTD simulation of whispering gallery mode microgear cavityh, IEEE J. Quantum Electron., vol. 37, no. 10, pp. 1253-1258, 2001. (68)  pdf

65.  M. Fujita, R. Ushigome and T. Baba, gStrain relaxation effect in microdisk lasers with compressively-strained quantum wellsh, Appl. Phys. Lett., vol. 80, no. 9, pp. 1511-1513, 2002. (12)  pdf

66.   M. Fujita and T. Baba, gMicrogear laserh, Appl. Phys. Lett., vol. 80, no. 12, pp. 2051-2053, 2002. (146) pdf

67.  A. Sakai, T. Fukazawa and T. Baba, gLow loss ultra-small branches in Si photonic wire waveguidesh, IEICE Trans. Electron., vol. E85-C, no. 4, pp. 1033-1038, 2002. (115)  pdf

68.  T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe and A. Sakai, gLight propagation characteristics of straight single line defect optical waveguides in a photonic crystal slab fabricated into a silicon-on-insulator substrate,h IEEE J. Quantum Electron., vol. 38, no. 7, pp. 743-752, 2002. (191)  pdf

69.  T. Baba and M. Nakamura, gPhotonic crystal light deflection devices using the superprism effecth, IEEE J. Quantum Electron., vol. 38, no. 7, pp. 909-914, 2002. (246)  pdf

70.  T. Baba and T. Matsumoto, gResolution of photonic crystal superprismh, Appl. Phys. Lett., vol. 81, no. 13, pp. 2325-2327, 2002. (182) pdf

71.  K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya and Y. Aoyagi, "Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation", Appl. Phys. Lett., vol. 81, no. 17, pp. 3122-3124, 2002. (92) pdf

72.  R. Ushigome, M. Fujita and T. Baba, gGaInAsP microdisk Injection laser with Benzocyclobutene polymer cladding and its athermal effecth, Jpn. J. Appl. Phys., vol. 41, no. 11A, pp. 6364-6369, 2002. (54) pdf

73.  T. Fukazawa, A. Sakai and T. Baba, gH-tree-type optical clock signal distribution circuit by a Si photonic wire waveguideh, Jpn. J. Appl. Phys., vol. 41, no. 12B, pp. L1461-L1463, 2002. (37)  pdf

74.  K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya and Y. Aoyagi, gMicroassembly of semiconductor three-dimensional photonic crystalsh, Nature Materials, vol. 2, no. 1, pp. 117-121, 2003. (356) pdf 

75.  T. Baba and T. Iwai, gEnhancement of third order nonlinearity calculated for two-dimensional photonic crystalsh, Jpn. J. Appl. Phys., vol. 42, no. 4A, pp. 1603-1608, 2003. (12) pdf

76.  K. Inoshita and T. Baba, gRoom temperature lasing characteristics of bend and branch in photonic crystal waveguidesh, Jpn. J. Appl. Phys., vol. 42, no. 11, pp. 6887-6891, 2003. (14) pdf

77.  T. Baba and D. Sano, gLow threshold lasing and Purcell effect in microdisk lasers at room temperatureh, IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 5, pp. 1340-1346, 2003 (164) pdf.

78.  K. Inoshita and T. Baba, gFabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defectsh, IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 5, pp. 1347-1354, 2003 (44)pdf.

79.  K. Nozaki, A. Nakagawa, D. Sano and T. Baba, gUltralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystalsh, IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 5, pp. 1355-1360, 2003 (81) pdf.

80.  K. Inoshita and T. Baba, gLasing at bend, branch and intersection of photonic crystal waveguidesh, Electron. Lett., vol. 39, no. 11, pp. 844-846, 2003. (34) pdf

81.  T. Baba, M. Shiga and K. Inoshita, gCarrier plasma shift in GaInAsP photonic crystal point defect cavityh, Electron. Lett., vol. 39, no. 21, pp. 1516-1518, 2003. (23) pdf

82.  H. Ichikawa and T. Baba, gEfficiency enhancement in a light emitting diode with a two-dimensional surface grating photonic crystalh, Appl. Phys. Lett., vol. 84, no. 2, pp. 457-459, 2004. (186) pdf 

83.  T. Fukazawa, T. Hirano, F. Ohno and T. Baba, gLow loss intersection of Si photonic wire waveguidesh, Jpn. J. Appl. Phys., vol. 42, no. 2, pp. 646-647, 2004. (181) pdf 

84.  A. Sakai, T. Fukazawa and T. Baba, gEstimation of polarization crosstalk at a micro-bend in Si photonic wire waveguideh, J. Lightwave Technol., vol. 22, no. 2, pp. 520-525, 2004 (35). pdf 

85.  T. Matsumoto and T. Baba, gPhotonic crystal k-vector superprismh, J. Lightwave Technol., vol. 22, no. 3, pp. 917-922, 2004 (74) pdf.

86.  T. Matsumoto and T. Baba, gDesign and FDTD simulation of photonic crystal k-vector superprismh, IEICE Trans. Electron., vol. E87-C, no. 3, pp. 393-397, 2004. (4) pdf 

87.  T. Fukazawa, F. Ohno and T. Baba, gVery compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguidesh, Jpn. J. Appl. Phys., vol. 43, no. 5B, pp.L673 - L675, 2004. (237) pdf

88.  K. Nozaki and T. Baba, gQuasiperiodic photonic crystal microcavity lasersh, Appl. Phys. Lett., vol. 84, no. 24, pp. 4875-4877, 2004. (115) pdf

89.  T. Baba, D. Mori, K. Inoshita and Y. Kuroki, gLight localization in line defect photonic crystal waveguidesh, IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 3, pp. 484-491, 2004. (120) pdf

90.  T. Baba, T. Matsumoto and M. Echizen, gFinite difference time domain study of high efficiency photonic crystal superprismsh, Opt. Express, vol. 12, no. 19, pp. 4608-4613, 2004. (55) pdf

91.  D. Mori and T. Baba, gDispersion-controlled optical group delay device by chirped photonic crystal waveguidesh, Appl. Phys. Lett., vol. 85, no. 7, pp. 1101-1103, 2004. (220) pdf

92.  T. Ide, T. Baba, J. Tatebayashi, T. Iwamoto, T. Nakaoka and Y. Arakawa, gLasing characteristics of InAs quantum-dot microdisk from 3K to room temperatureh, Appl. Phys. Lett., vol. 85, no. 8, pp. 1326-1328, 2004. (45) pdf

93.  T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, gObservation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperatureh, Appl. Phys. Lett., vol. 85, no. 18, pp. 3989-3991, 2004. (93) pdf

94.  A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Morito, and T. Baba gHigh-power single-mode vertical-cavity surface-emitting lasers with triangular holey structureh, Appl. Phys. Lett., vol. 85, no. 22, pp. 5161-5163, 2004. (181) pdf

95.  A. Nakagawa, S. Ishii and T. Baba, gPhotonic molecule lasers composed of GaInAsP microdisksh, Appl. Phys. Lett., vol. 86, no. 4, pp. 041112, 2005. (140) pdf

96.  T. Ide, T. Baba, J. Tatebayashi, T. Iwamoto, T. Nakaoka and Y. Arakawa, gRoom temperature continuous wave lasing in InAs quantum-dot microdisks with air claddingh, Opt. Express, vol. 13, no. 5, pp. 1615-1620, 2005. (56) pdf

97.  ”nêr•F, âˆä“Ä, [àV’B•F, ‘å–앶², gSi×ü“±”g˜Hh, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J88-C, no. 6, pp. 363-373, 2005 (µ‘Ò˜_•¶). (2)  pdf  

98.  K. Nozaki and T. Baba, gCarrier and photon analyses of photonic microlasers by two-dimensional rate equationsh, IEEE J. Sel. Area. Commun., vol. 23, no. 7, pp. 1411- 1417, 2005. (18) pdf

99.  F. Ohno, T. Fukazawa and T. Baba, gMach-Zehnder interferometers composed of m-bends and m-branches in the Si photonic wire waveguideh, Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 5322-5323, 2005. (33) pdf 

100.K. Sasaki, F. Ohno, A. Motegi and T. Baba, gArrayed waveguide grating of 70 L 60 mm2 size based of Si photonic wire waveguidesh, Electron. Lett., vol. 41, no. 14, pp. 801-802, 2005. (175)  pdf

101.K. Nozaki, T. Ide, J. Hashimoto, W-H. Zheng and T. Baba, gPhotonic crystal point-shift photonic crystal nanolaser with ultimate small modal volumeh, Electron. Lett., vol. 41, no. 15, pp. 843-845, 2005. (38) pdf

102.S. Ishii and T. Baba, gBistable lasing in twin microdisk photonic moleculeh, Appl. Phys. Lett., vol. 87, no. 18, pp. 181102, 2005. (82)pdf

103.D. Mori and T. Baba, gWideband and low dispersion slow light by chirped photonic crystal coupled waveguideh, Opt. Express, vol. 13, no. 23, pp. 9398-9408, 2005. (240)  pdf pdf pdf

104.T. Matsumoto, S. Fujita and T. Baba, gWavelength demultiplexer consisting of photonic crystal superprism and superlensh, Opt. Express, vol. 13, no. 26, pp. 10768 – 10776, 2005. (118) pdf

105.S. Ishii, A. Nakagawa and T. Baba, gModal characteristics and bistability in twin microdisk photonic molecule laserh, IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 1, pp. 71-77, 2006. (67) pdf

106.W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki and T. Baba, gDipole mode photonic crystal point defect laser on InGaAsP/InPh, J. Crystal Growth, vol. 292, no. 2, pp. 341-344, 2006. (22)

107.T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, gInP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabricationh, Jpn. J. Appl. Phys., vol. 45, no. 3, pp. L102-L104, 2006. (28) pdf

108.K. Kiyota, T. Kise, N. Yokouchi, T. Ide and T. Baba, gVarious low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillationh, Appl. Phys. Lett., vol. 88, no. 20, pp. 201904, 2006. (50) pdf

109.K. Nozaki and T. Baba, gLasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasersh, Appl. Phys. Lett., vol. 88, no. 21, pp. 211101, 2006. (107) pdf

110.H. Watanabe and T. Baba, gActive/passive-integrated photonic crystal slab microlaserh, Electron. Lett., vol. 42, no. 12, pp. 695-696, 2006. (19) pdf

111.K. Nozaki and T. Baba, gLasing characteristics of 12-fold symmetric quasiperiodic photonic crystal slab nanolasersh, Jpn. J. Appl. Phys., vol. 45, no. 8A, pp. 6087-6090, 2006. (9) pdf

112.S. Ishii, K. Nozaki and T. Baba, gPhotonic molecules in photonic crystalh, Jpn. J. Appl. Phys., vol. 45, no. 8A, pp. 6108-6111, 2006. (31) pdf

113.E. Mizuta, H. Watanabe and T. Baba, gAll semiconductor low-D photonic crystal waveguide for semiconductor optical amplifierh, Jpn. J. Appl. Phys., vol. 45, no. 8A, pp. 6116-6120, 2006. (75) pdf

114.F. Ohno, K. Sasaki and T. Baba, gReduction of sidelobe level in ultra-compact arrayed waveguide grating demultiplexer based on Si wire waveguideh, Jpn. J. Appl. Phys., vol. 45, no. 8A, pp. 6126-6131, 2006. (24) pdf

115.T. Matsumoto, K. Eom and T. Baba, gFocusing of light by negative refraction in photonic crystal slab superlens on SOI substrateh, Opt. Lett., vol. 31, no. 18, pp. 2786-2788, 2006. (97) pdf

116.T. Baba and D. Mori, gSlowlight engineering in photonic crystalsh, J. Phys. D: Appl. Phys., vol. 40, no. 9, pp. 2659-2665, 2007.(Invited Paper) (135) pdf

117.D. Mori, S. Kubo, H. Sasaki and T. Baba, gExperimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional couplerh, Opt. Express, vol. 15, no. 9, pp. 5264-5270, 2007. (91) pdf

118.K. Nozaki, S. Kita and T. Baba, gRoom temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaserh, Opt. Express, vol. 15, no. 12, pp. 7506-7514, 2007.(288) pdf

119.T. Kawasaki, D. Mori and T. Baba, gExperimental observation of slow light in photonic crystal coupled waveguidesh, Opt. Express, vol. 15, no. 16, pp. 10274-10281, 2007. (57) pdf

120.T. Matsumoto, T. Asatsuma and T. Baba, gExperimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal componentsh, Appl. Phys. Lett. vol. 91, no. 9, pp. 091117, 2007. (41) pdf

121.S. Kubo, D. Mori and T. Baba, gLow-group-velocity and low-dispersion slow light in photonic crystal waveguidesh, Opt. Lett., vol. 32, no. 20, pp. 2981-2983, 2007. (224)  pdf

122.K. Nozaki, H. Watanabe and T. Baba, gPhotonic crystal nanolaser monolithically integrated with passive waveguide for effective light extractionh, Appl. Phys. Lett., vol. 92, no. 2, pp. 021108, 2008. (80)pdf

123.K. Nozaki, S. Kita, Y. Arita and T. Baba, gResonantly photopumped lasing and its switching behavior in a photonic crystal nanolaserh, Appl. Phys. Lett., vol. 92, no. 2, pp. 021501, 2008. (5) pdf

124.H. Watanabe and T. Baba, gHigh-efficiency photonic crystal microlaser integrated with a passive waveguideh, Opt. Express, vol. 16, no. 4, pp. 2694-2698, 2008. (32) pdf

125.S. Kita, K. Nozaki and T. Baba, gRefractive index sensing utilizing a cw photonic crystal nanolaser and its array configurationh, Opt. Express, vol. 16, no. 11, pp. 8174-8180, 2008. (130)pdf

126.T. Asatsuma and T. Baba, gAberration reduction and unique light focusing in a photonic crystal negative refractive lensh, Opt. Express, vol. 16, no. 12, pp. 8711-8719, 2008. (26) pdf

127.T. Baba, T. Kawasaki, H. Sasaki, J. Adachi and D. Mori, gLarge delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguideh, Opt. Express, vol. 16, no. 12, pp. 9245-9253, 2008. (157) pdf

128.T. Baba, gSlow light in photonic crystalsh, Nature Photon., vol. 2, no. 8, pp. 465-473, 2008 (Invited Paper). (2157, “¯Ž—ð‘ã10ˆÊ)  pdf

129.W. Zheng, G. Ren, M. Xing, W. Chen, A. Liu, W. Zhou, T. Baba, K. Nozaki and L. Chen, gHigh efficiency operation of butt joint line-defect waveguide microlaser in two-dimensional photonic crystal slabh, Appl. Phys. Lett., vol. 93, no. 8, pp. 081109, 2008. (10) pdf

130.R. J. P. Engelen, D. Mori, T. Baba and L. Kuipers, gTwo regimes of slow-light losses revealed by adiabatic reduction of group velocityh, Phys. Rev. Lett., vol. 101, no. 10, pp. 103901, 2008. (129) pdf

131.T. Baba, T. Matsumoto and T. Asatsuma, gNegative refraction in photonic crystalsh, Adv. Sci. Technol., vol. 15, pp. 91-100, 2008. (14) pdf

132.T. Baba, T. Asatsuma and T. Matsumoto, gNegative refraction in photonic crystalsh, MRS Bulletin, vol. 33, no. 10, pp. 907-910, 2008 (Invited Paper). (19) pdf

133.R. J. P. Engelen, D. Mori, T. Baba and L. Kuipers, gSubwavelength structure of the evanescent field of an optical Bloch waveh, Phys. Rev. Lett., vol. 102, no. 2, pp. 023902, 2009. (44) pdf

134.M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba and L. Kuipers, gObservation of polarization singularities at nanoscale,h Phys. Rev. Lett., vol. 102, no. 3, pp. 033902, 2009. (190) pdf

135.Y. Hamachi, S. Kubo and T. Baba, gSlow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,h Opt. Lett., vol. 34, no. 7, pp. 1072-1074, 2009. (238) pdf

136.K. Suzuki, Y. Hamachi and T. Baba, gFabrication and characterization of chalcogenide glass photonic crystal waveguidesh, Opt. Express, vol. 17, no. 25, pp. 22393-22400, 2009. (94) pdf

137.T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, gDispersion-controlled slow light in photonic crystal waveguides,h Proc. Jpn. Sci. Academy Ser. B, vol. 85, no. 10, pp. 443-453, 2009 (Invited Paper). (16) pdf

138.J. Adachi, N. Ishikura, H. Sasaki and T. Baba, gWide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirpingh, IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 1, pp. 192-199, 2010 (Invited Paper). (78) pdf

139.T. Baba, H. Abe, T. Asatsuma, and T. Matsumoto, gPhotonic crystal negative refractive opticsh, J. Nanosci. Nanotech., vol. 10, no. 3, pp. 1473-1481, 2010 (Invited Paper).(4) pdf

140.Y. Saito and T. Baba, gStopping of light by the dynamic tuning of photonic crystal slow light deviceh, vol. 18, no. 16, 17141-17153, 2010. (19) pdfpdfpdfpdfpdfpdfpdf

141.F. Shinobu, Y. Arita and T. Baba, gLow-loss simple waveguide intersection in silicon photonicsh, Electron. Lett., vol. 46, no. 16, pp. 1149-1151, 2010. (9) pdf

142.S. Kita, S. Hachuda, K. Nozaki and T. Baba, gNanoslot laserh, Appl. Phys. Lett., vol. 97, no. 16, pp. 161108, 2010. (31) pdf

143.K. Suzuki and T. Baba, gNonlinear light propagation in chalcogenide photonic crystal slow light waveguidesh, Opt. Express, vol. 18, no. 25, pp. 26675-26685, 2010 (Invited Paper). (61) pdf 

144.Y. Arita, N. Yoshikawa and T. Baba, gIntegration of optical waveguides with single flux quantum circuitsh, IEEE Trans. Appl. Superconductivity, vol. 21, no. 3, pp. 839-842, 2011. (1) pdf

145.H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura and T. Baba, g10 Gb/s operation of photonic crystal silicon optical modulatorsh, Opt. Express, vol. 19, no. 14, pp. 13000-13007, 2011. (111) pdf

146.F. Shinobu, Y. Arita, T. Tamanuki, N. Ishikura and T. Baba, gContinuously tunable slow-light device consisting of heater-controlled silicon microring arrayh, Opt. Express, vol. 19, no. 14, pp. 13557-13564, 2011. (39) pdf

147.S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa and  T. Baba, gSuper-sensitivity in label-free protein sensing using nanoslot nanolaserh, Opt. Express, vol. 19, no. 18, pp. 17683-17690, 2011. (94) pdf

148.S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita and T. Baba, gPhotonic crystal point-shift nanolaser with and without nanoslots --- design, fabrication, lasing and sensing characteristicsh, IEEE J. Sel. Top. Quantum Electron., vol. 17, 2011 (Invited Paper). (58) pdf

149.N. Inoue and T. Baba, gSpectral and polarization characteristics of photonic crystal under normally incident light and their tuning with liquid crystal controlh, Jpn. J. Appl. Phys., vol. 50, no. 10, pp. 102203, 2011. pdf

150.M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki and T. Baba, gNonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible processh, Opt. Express, vol. 19, no. 22, pp. 22208-22218, 2011. (106) pdf

151.N. Ishikura, T. Baba, E. Kuramochi and M. Notomi, gLarge tunable fractional delay in slow light pulse and its application to fast optical correlatorh, Opt. Express, vol. 19, no. 24, pp. 24102-24108, 2011. (33) pdfpdf

152.”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚É‚æ‚éV¢‘ãŒõWςƃCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“h, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 94, no. 12, pp. 1037-1040, 2011 (µ‘Ò˜_•¶) pdf

153.H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura and T. Baba, gPhotonic crystal silicon optical modulators: carrier-injection and depletion at 10 Gb/sh, IEEE J. Quantum Electron., vol. 48, no. 2, pp. 210-220, 2012 (Invited Paper). (51)pdf

154.S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa and  T. Baba, gPhotonic crystal nanolaser bio-sensorsh, IEICE Trans. Electron., vol. E95-C, no. 2, pp. 188-198, 2011 (Invited Paper).(12) pdf

155.K. Suzuki, H. C. Nguyen, T. Tamanuki, F. Shinobu, Y. Saito, Y. Sakai and T. Baba, gSlow-light-based variable symbol-rate silicon photonics DQPSK receiverh, Opt. Express, vol. 20, no. 4, pp. 4796-4804, 2012. (56) pdf

156.M. Narimatsu, S. Kita, H. Abe and T. Baba, gEnhancement of vertical emission in photonic crystal nanolasers,h Appl. Phys. Lett., vol. 100, no. 12, pp. 121117, 2012. (39) pdf

157.N. Ishikura, R. Hayakawa, R. Hosoi, T. Tamanuki, M. Shinkawa and T. Baba, gPhotonic crystal tunable slow light device integrated with multi-heaters,h Appl. Phys. Lett., vol. 100, no. 22, pp. 221110, 2012. (65) pdf

158.H. C. Nguyen, S. Hashimoto, M. Shinkawa and T. Baba, gCompact and fast photonic crystal silicon optical modulators,h Opt. Express, vol. 20, no. 20, pp. 22465-22474, 2012. (121) pdf

159.R. Hayakawa, N. Ishikura and T. Baba, gTwo-photon-absorption photodiodes in photonic-crystal slow-light waveguidesh, Appl. Phys. Lett., vol. 102, no. 3, pp. 031114, 2013. (44) pdf

160.K. Kondo, M. Shinkawa, Y. Hamachi, Y. Saito, Y. Arita, and T. Baba, gUltrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguidesh, Phys. Rev. Lett., vol. 110, no. 5, pp. 053902, 2013. (75) pdfpdf

161.S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima and T. Baba, gSelective detection of sub-atto-molar streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensorsh, Opt. Express, vol. 21, no. 10, pp. 12815-12821, 2013. (55) pdf

162.T. Baba, H. C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa and K. Kondo, gSi photonic crystal slow light devicesh, IEICE Electron. Express, vol. 10, no. 10, pp. 1-15, 2013 (Invited Paper). (13)  pdf

163.R. Hayakawa, N. Ishikura, H. C. Nguyen and T. Baba, gHigh-speed delay-tuning of slow-light in pin-diode-incorporated photonic crystal waveguideh, Opt. Lett., vol. 38, no. 15, pp. 2680-2682, 2013. (13) pdf

164.H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka and T. Baba, gSub-100 mm photonic crystal Si optical modulators: spectral, athermal and high-speed performanceh, IEEE J. Sel. Top. Quantum Electron., 2013 (Invited Paper). (53) pdf

165.T. Watanabe, H. Abe, Y. Nishijima and T. Baba, "Array integration of thousands of photonic crystal nanolasers", Appl. Phys. Lett., vol. 104, no. 12, pp. 121108, 2014. (18) pdf

166.”nêr•F, "CMOSƒvƒƒZƒX‚ð—p‚¢‚½ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX", ƒŒ[ƒU[Œ¤‹†, vol. 42, no. 3, pp. 223-228, 2014 (µ‘Ò˜_•¶). pdf

167.T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, Hashimoto, T. Watanabe, "Slow-light Mach-Zehnder modulators based on Si photonic crystals", Sci. Technol. Adv. Mat., vol. 15, no. 2, pp. 024602, 2014 (Invited Paper). (64)pdf

168.K. Kondo and T. Baba, "Dynamic wavelength conversion in copropagating slow-light pulses", Phys. Rev. Lett., vol. 112, no. 22, pp. 223904, 2014. (39) pdf

169.Y. Terada, H. Ito, H. C. Nguyen and T. Baba, "Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction ", Front. Phys., vol. 2, no. 61, pp. 1-9, 2014. (39) pdf

170.H. Ito, N. Ishikura and T. Baba, "Triangular-shaped coupled microrings for robust wavelength multi-/demultiplexing in Si photonics", J. Lightwave Technol., vol. 33, no. 2, pp. 304-310, 2014. (13)  pdf

171.K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima and T. Baba, "Simultaneous detection of refractive index and surface charges in nanolaser biosensors", Appl. Phys. Lett., vol. 106, no. 2, pp. 021106, 2015. (41) pdf

172.K. Kondo, N. Ishikura, T. Tamura and T. Baba, "Temporal pulse compression by dynamic slow-light tuning in photonic crystal waveguides", Phys. Rev. A, vol. 91, no. 02, pp. 023831, 2015. (17) pdf

173.D. Takahashi, S. Hachuda, T. Watanabe, Y. Nishijima and T. Baba, "Detection of endotoxin using a photonic crystal nanolaser", Appl. Phys. Lett., vol. 106, no. 13, pp. 131112, 2015. (20)  pdf

174.T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura and T. Baba, "Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light", J. Lightwave Technol., vol. 33, no. 14, pp. 3034-3040, 2015. (40)  pdf

175.H. Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S. Kita, A. Tomitaka, S. Ota, Y. Takemura and T. Baba, "Living-cell imaging using a photonic crystal nanolaser array," Opt. Express, vol. 23, no. 13, pp. 17056-17066, 2015. (22) pdf

176.S. Kinugasa, N. Ishikura, H. Ito, N. Yazawa and T. Baba, "One-chip integration of optical correlator based on slow-light devices", Opt. Express, vol. 23, no. 16, pp. 20767-20773, 2015. (15)  pdf

177.H. Ito, Y. Terada, N. Ishikura and T. Baba, "Hitless tunable WDM transmitter using Si photonic crystal optical modulators", Opt. Express, vol. 23, no. 17, pp. 21629-21636, 2015. (8) pdf

178.T. Baba, gBiosensing using photonic crystal nanolasersh, MRS Commun., vol. 5, no. 4, pp 555 - 564, 2015 (Invited Paper). (31) pdf

179.Y. Terada, K. Miyasaka, H. Ito and T. Baba, gSlow-light effect in a silicon photonic crystal waveguide as a sub-bandgap photodiodeh, Opt. Lett., vol. 41, no. 2, pp. 289-292, 2016. (15) pdf

180.K. Kondo and T. Baba, gSlow-light-induced Doppler shift in photonic-crystal waveguidesh, Phys. Rev. A (Rapid Commun.), vol. 93, no. 1, pp. 011802(R), 2016D(22)pdf

181.Y. Hinakura, Y. Terada, T. Tamura and T. Baba, gWide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal–oxide–semiconductor processh, Photonics, vol. 3, no. 2, pp. 17(1-11), 2016. (34) pdf

182.K. Hojo, Y. Terada, N. Yazawa, T. Watanabe and T. Baba, gCompact QPSK and PAM modulators with Si photonic crystal slow light phase shiftersh, IEEE Photon. Technol. Lett., vol. 28, no. 13, pp. 1438-1441, 2016. (14) pdf

183.M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura and T. Baba, gCell imaging using GaInAsP semiconductor photoluminescenceh, Opt. Express, vol. 24, no. 10, pp. 11232-11238, 2016. (11) pdf

184.S. Hachuda, T. Watanabe, D. Takahashi and T. Baba, gSensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaserh, Opt. Express, vol. 21, no. 10, pp. 12815-12821, 2016. (15) pdf

185.”nêr•F, ‰H’†“c¯Ži, “n粌h‰î, “n•”H, ˆ¢•”hŽm, ‚‹´‘å’n, ŠÝ—mŽŸ, Žð–{^ˆß, gGaInAsP”¼“±‘̃iƒmƒŒ[ƒU‚̃oƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J100-C, no. 2, pp. 61-71, 2017 (µ‘Ò˜_•¶). pdf

186.Y. Terada, T. Tatebe, Y. Hinakura and T. Baba, gSi photonic crystal slow-light modulators with periodic p–n junctionsh, J. Lightwave Technol., vol. 35, no. 9, pp. 1684-1692, 2017. (39) pdf

187.H. Hashiguchi, K. Kondo, T. Baba and H. Arai, gAn optical leaky wave antenna by waffled structure,h J. Lightwave Technol., vol. 35, no. 11, pp. 2273-2279, 2017. (21) pdf

188.K. Kondo and T. Baba, gOn-chip autocorrelator using counter-propagating slow light in a photonic crystal with two-photon absorption photodiodesh, Optica, vol. 4, no. 9, pp. 1109-1112, 2017. (16) pdf

189.T. Watanabe, Y. Saijo, Y. Hasegawa, K. Watanabe, Y. Nishijima and T. Baba, "Ion-sensitive photonic-crystal nanolaser sensors," Opt. Express, vol. 25, no. 20, pp. 24469-24479, 2017. (32) pdf

190.Y. Terada, K. Miyasaka, K. Kondo, N. Ishikura, T. Tamura and T. Baba, gOptimized optical coupling to silica-clad photonic crystal waveguideh, Opt. Lett., vol. 42, no. 22, pp. 4695-4698, 2017. (14) pdf

191.K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama and T. Baba, "Fan beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating", Opt. Lett., vol. 42, no. 23, pp. 4990-4993, 2017. (57) pdf

192.Y. Terada, K. Kondo, R. Abe and T. Baba, "Full-C-band Si photonic-crystal-waveguide modulator", Opt. Lett., vol. 42, no. 24, pp.5110-5112, 2017. (39) pdf

193.H. Hashiguchi, T. Baba and H. Arai, gPlane wave excitation by taper array for optical leaky waveguide antennah, IEICE Electron. Express, vol. 15, no.2, pp.1-6, 2018. (2) pdf

194.K. Kondo and T. Baba, gHigh-performance on-chip autocorrelator using counter-propagating pulses and a rib waveguideh, Opt. Lett., vol. 43, no. 4, pp. 719-722, 2018. (3) pdf

195.K. Kondo and T. Baba, gAdiabatic wavelength redshift by dynamic carrier depletion using p-n diode-loaded photonic crystal waveguidesh, Phys. Rev. A, vol. 97, no. 03, pp. 033818 (1-5), 2018. (7) pdf

196.H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado and T. Baba, gTwo-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguideh, Opt. Express, vol. 26, no. 8, pp. 9389-9397, 2018. (67) pdf

197.G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito and T. Baba, gThermally controlled Si photonic crystal slow light waveguide beam steering deviceh, Opt. Express, vol. 26, no. 9, pp.11529-11537, 2018. (38) pdf

198.Y. Hinakura, Y. Terada, H. Arai and T. Baba, gElectro-optic phase matching in Si photonic crystal slow light modulator using meander-line electrodesh, Opt. Express, vol. 26, no. 9, pp.11538-11545, 2018.(14) pdf

199.K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima and T. Baba, gLabel-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensorh, Biosen. Bioelectron., vol. 117, no., pp. 161-167, 2018. (17) pdf

200.Y. Furukado, H. Abe, Y. Hinakura and T. Baba, gExperimental simulation of ranging action using Si photonic crystal modulator and optical antennah, Opt. Express, vol. 26, no. 14, pp. 18222-18229, 2018. (11) pdf

201.H. Ito, T. Tatebe, H. Abe and T. Baba, gWavelength-division multiplexing Si photonic crystal beam steering device for high throughput parallel sensingh, Opt. Express, vol. 26, no. 20, pp. 26145-26155, 2018. (16) pdf

202.H. Hashiguchi, T. Baba and H. Arai, gOptical beam expander with parabolic photonic bandgap reflector for efficient excitation of optical leaky wave antennah, J. Lightwave Technol., vol. 37, no. 9, pp. 2094-2099, 2019. (4) pdf

203.H. Iwase and T. Baba, "Electromagnetic-field imbalance in surface plasmon polariton and its role in slow propagation and field-matter interaction", J. Opt. Soc. Am. B, vol. 36, no. 5, pp. 1327-1334, 2019. (1) pdf

204.Y. Hinakura, H. Arai and T. Baba, "64 Gbps Si photonic crystal slow light modulator by electro-optic phase matching", Opt. Express, vol. 27, no. 10, pp. 14321-14327, 2019. (32) pdf

205.Y. Saijo, K. Watanabe, T. Watanabe, Y. Terada, Y. Nishijima and Toshihiko Baba, "Iontronic control of GaInAsP photonic crystal nanolaser", Appl. Phys. Lett., vol. 114, no. 22, pp. 221105, 2019. (3) pdf

206.T. Baba, "Photonic and iontronic sensing in GaInAsP semiconductor photonic crystal nanolasers", Photonics, vol. 6, no. 65, pp. 1-17, 2019. (6) pdf

207.R. Tetsuya, H. Abe, H. Ito and T. Baba, gEfficient light transmission, reception and beam forming in photonic crystal beam steering device in a phased array configurationh, Jpn. J. Appl. Phys., vol. 58, no. 082002, pp. 1-5, 2019. (5) pdf

208.K. Watanabe and T. Baba, "Enhanced pH sensitivity in photoluminescence of GaInAsP semiconductor photonic crystal slab", Opt. Express, vol. 27, no. 18, pp. 24978-24988, 2019. (3) pdf

209.M. A. Gaafar, T. Baba, M. Eich and A. Yu. Petrov, gFront-induced transitionsh, Nature Photonics, https://doi.org/10.1038/s41566-019-0511-6, 2019. (55) pdf

210.J. Maeda, D. Akiyama, H. Ito, H. Abe and T. Baba, gPrism lens for beam collimation in silicon photonic crystal beam-steering deviceh, Opt. Lett., vol. 44, no. 23, pp. 5780-5783, 2019. (5) pdf

211.A. Sakata, K. Watanabe and T. Baba, gOptimization of atomic layer deposition temperature of ZrO2 coat for GaInAsP photonic crystal nanolaser sensorh, Jpn. J. Appl. Phys., vol. 59, no. 012001, pp. 1-3, 2020. (1) pdf

212.R. Abe, T. Takeda, R. Shiratori, S. Shirakawa, S. Saito and T. Baba, gOptimization of H0 photonic crystal nanocavity using machine learningh, Opt. Lett., vol. 45, no. 2, pp. 319-322, 2020. (5) pdf

213.H. Ito, Y. Kusunoki, J. Maeda, D. Akiyama, N. Kodama, H. Abe, R. Tetsuya, and T. Baba, gWide beam steering by slow-light waveguide grating and prism lensh, Optica, vol. 7, no. 1, pp. 47-52, 2020. (103) pdf

214.M. Kamata, Y. Hinakura and T. Baba, gCarrier-suppressed single sideband signal for FMCW LiDAR using Si photonic crystal optical modulatorsh, J. Lightwave Technol., vol. 38, no. 8, pp. 2315-2321, 2020. (6) pdf

215.Y. Hinakura, H. Arai and T. Baba, gDevelopment of 64 Gbps Si photonic crystal modulatorh, IEICE Trans. Electron., vol. E103-C, no. 11, pp. 635-644, 2020 (Invited Paper). pdf

216.”nêr•F, ˆÉ“¡Š°”V, ˆ¢•”hŽm, ‹ÊŠÑŠx³, ’|“àŒå˜N, ŒÃ–å—D–í, —‘q—z‰î, ‘O“c“Õ, HŽR‘å’n, ‘q‹´—È, “í˜Ð^, “S–î—È, Š™“cŠ²–ç, ”’’¹—É, ‹ß“¡Œ\—S, Œš•”’m‹I, ’|“à–G], ”Š_Œ’—S, Ž™‹Ê’¼–ç, ‰¡ì•üŽ÷, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒXƒ[ƒ‰ƒCƒgƒ‰ƒCƒ_‚ÌŠJ”­h, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J103-C, no. 11, pp. 434-452, 2020 (µ‘Ò˜_•¶) pdf

217.Y. Hinakura, D. Akiyama, H. Ito, and T. Baba, "Silicon photonic crystal modulators for high-speed transmission and wavelength division multiplexing", IEEE J. Sel. Top. Quantum Electron., vol. 27, no. 3, pp. 4900108, 2021. (Invited Paper) (31) pdf

218.T. Tamanuki, H. Ito and T. Baba, "Thermo-optic beam scanner employing silicon photonic crystal slow-Light waveguides", J. Lightwave Technol., vol. 39, no. 4, pp. 904-911, 2021.@(Invited Paper) (1) pdf

219.K. Watanabe, A. Sakata and T. Baba, gpH-sensitive GaInAsP photonic crystal fractal band-edge laserh, Opt. Lett., vol. 45, no. 22, pp. 6202-6205, 2020. pdf

220.S. Kaneoka, W. Iida, H. Hashiguchi, T. Baba and H. Arai, gOptical high-gain leaky-wave antenna by using a waffle-iron waveguideh, IEICE Electron. Express, vol., 18, no. 1, pp. 20200411, 2021. pdf 

221.R. Shiratori, M. Nakata, K. Hayashi and T. Baba, gParticle swarm optimization of silicon photonic crystal waveguide transitionsh, Opt. Lett., vol. 46, no. 8, pp. 1904-1907, 2021 (34) pdf

222.A. Balcytis, T. Ozawa, Y. Ota, S. Iwamoto, J. Maeda and T. Baba, gSynthetic dimension band structures on a Si CMOS photonic platform", arXive.2105.13742, 2021. (1) pdf

223.J. Gondo, H. Ito, T. Tamanuki, and T. Baba, gSpace-time-domain observation of high-speed optical beam scanning in a thermo-optic Si photonic crystal slow-light beam scannerh, Opt. Lett., vol. 46, no. 15, pp. 3600-3603, 2021. pdf

224.M. Nomoto, G. T. Konopaske, N. Yamashita, R. Aoki, A. Jitsuki-Takahashi, H. Nakamura, H. Makihara, M. Saito, Y. Saigusa, F. Nakamura, K. Watanabe, T. Baba, F. M. Benes, B. T. D. Tobe, C. D. Pernia, J. T. Coylec, R. L. Sidman, Y. Hirayasu, E. Y. Snyder, and Y. Goshima, gClinical evidence that a dysregulated master neural network modulator may aid in diagnosing schizophreniah, PNAS, vol. 118, no. 31, pp. e2100032118 (1-7), 2021. pdf

225.K. Hirotani, R. Shiratori and T. Baba, gSi photonic crystal slow-light waveguide optimized by informatics technologyh, Opt. Lett., vol. 46, no. 17, pp. 4422-4425, 2021. pdf

226.S. Suyama, H. Ito, R. Kurahashi, H. Abe and T. Baba, gDoppler velocimeter and vibrometer FMCW LiDAR with Si photonic crystal beam scannerh, Opt. Express, vol. 29, no. 19, pp. 30727-30734, 2021. pdf

227.R. Tetsuya, T. Tamanuki, H. Ito, H. Abe, R. Kurahashi, M. Seki, M. Ohtsuka, N. Yokoyama, M. Okano and T. Baba, gSi photonic crystal optical antenna serial array and frequency-modulated continuous-wave light detection and ranging actionh, Appl. Phys. Lett., vol. 119, no.23, pp.231103 (1-5), 2021. pdf

228.A. Balcytis, T. Ozawa, Y. Ota, S. Iwamoto, J. Maeda and T. Baba, gSynthetic dimension band structures on a Si CMOS photonic platformh, Sci. Adv., vol. 8, no. eabk0468, pp. 1-9, 2022. pdf

229.T. Baba, T. Tamanuki, H. Ito, M. Kamata, R. Tetsuya, S. Suyama, H. Abe, R. Kurahashi, gSilicon photonics FMCW LiDAR chip with slow light grating beam scannerh, IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 5, pp. 8300208, 2022 (Invited Paper).(40) pdf

230.K. Takahashi and T. Baba, gOptimization of a photonic crystal nanocavity using covariance matrix adaptation evolution strategyh, IEEE Photon. J., vol. 14, no. 3, pp. 8624505, 2022. pdf

231.L. Li, H. Arai and T. Baba, gImaging of electromagnetic waves using radio over fiber system including Si photonics microring modulator arrayh, Opt. Express, vol. 30, no. 18, pp. 31530-31538, 2022. pdf

232.VˆäG”V, ‹´ŒûOC”nêr•F, g6GŒõ–³ü—p‚—˜“¾Œõ˜R‚ê”gŒ^ƒr[ƒ€‘–¸ƒAƒ“ƒeƒih, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J105-B, no. 10, pp. 741-748, 2022 (µ‘Ò˜_•¶). pdf

233.J. Gondo, T. Tamanuki, R. Tetsuya, M. Kamata, H. Ito, T. Baba, gStep-like beam scanning in slow-light grating beam scanner for FMCW LiDARh, Opt. Lett., vol. 47, no. 20, pp. 5341-5343, 2022. pdf

234.L. Li, T. Tamanuki and T. Baba, gAll-optic control using a photo-thermal heater in Si photonicsh, Opt. Express, vol. 31, no. 23, pp. 41874-41883, 2022. pdf

235.S. Suyama and T. Baba, gHigh-efficiency upward radiation in slow-light grating beam scannerh, Opt. Express, vol. 31, no.13, pp. 22170-22178, 2023. pdf

236.M. Kamata and T. Baba, gOFDR analysis of Si photonics FMCW LiDAR chiph, Opt. Express, vol. 31, no. 15, pp. 25245-25252, 2023. pdf

237.M. Kamata, T. Tamanuki, R. Kubota, and T. Baba, gAmbient light immunity of frequency-modulated continuous-wave (FMCW) LiDAR chiph, Opt. Express, vol. 32, no. 3, pp. 3997-4012, 2024. pdf

238.S. Yamazaki, T. Tamanuki, H. Ito, R. Kubota and T. Baba, gSilicon FMCW LiDAR chip integrated with SLG beam scanner and k-clock interferometer for operation with wavelength-swept laser sourceh, Opt. Express, vol. 32, no. 12, pp. 21191-21199, 2024. pdf

239.H. X. Dinh, A. Balčytis1, T. Ozawa, Y. Ota, G. Ren, T. Baba, S. Iwamoto, A. Mitchell, and T. G. Nguyen, gReconfigurable synthetic dimension frequency lattices in an integrated lithium niobate ring cavityh, Commun. Phys., vol. 7, no. 185, 2024. pdf

 ’˜‘

1.     š •ª‘×—Y, ”nêr•F, ”÷¬ŒõŠw‚Ì•¨—“IŠî‘b (‰ž—p•¨—Šw‰ïŒõŠw§˜b‰ï•ÒW) gŒõ“±”g˜H‚ÌŠî‘bh, pp. 17-40, ’©‘q‘“X, 1991.

2.     T. Baba and K. Iga, gSpontaneous emissions in microcavity surface emitting lasersh, Spontaneous emission and laser operation in microcavities (Edited by K. Ujihara and H. Yokoyama), pp. 237-273, CRC Press, 1995. (6)

3.     T. Baba and T. Matsuzaki, gGaInAsP/InP 2-dimensional photonic crystalsh, Microcavities and Photonic Bandgaps (Edited by J. Rarity and C. Weisbuch), pp. 193-202, Kluwer Academic Publishers, The Netherlands, 1996.

4.     T. Baba, gElectron-photon interaction in photonic crystalsh, Mesoscopic Physics and Electronics (Edited by T. Ando, Y. Arakawa, K. Furuya, S. Komiyama and H. Nakashima), Springer Verlag, Berlin, pp. 167-175, 1997.

5.     ”nêr•F, g–Ê”­ŒõƒŒ[ƒU‚ÆŽ©‘R•úo§Œäh, –Ê”­ŒõƒŒ[ƒU‚ÌŠî‘b‚Ɖž—piˆÉ‰êŒ’ˆê, ¬ŽR“ñŽO•v•ÒWj, pp. 159-179, ‹¤—§o”Å, 1999.

6.     ”nêr•F, gŽ©‘R•úo§ŒäŒõƒfƒoƒCƒXh, —ÊŽqHŠwƒnƒ“ƒhƒuƒbƒN (‘å’ÃŒ³ˆê, rì‘וF•ÒW), pp. 508-534, ’©‘q‘“X, 1999.

7.     T. Baba and N. Fukaya, gLight propagation characteristics of defect waveguides in a photonic crystal slabh, Photonic Crystals and Light Localization (Ed. M. Soukoulis), pp. 105-116, Kluwer Academic, 2001.

8.     ”nêr•F, g‘àFƒtƒHƒgƒjƒbƒNŒ‹»Œ`”¼“±‘Ì”­Œõ‘fŽq‚ÌŠT—vh, gƒtƒHƒgƒjƒbƒNŒ‹»“_Œ‡Š×ƒŒ[ƒUh, ƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŠî‘b‚ÆŒõƒfƒoƒCƒX‚ւ̉ž—p(ì㲓ñ˜Y•Ò), pp. 185-205, 2002. 

9.     S. Noda and T. Baba, Eds., Roadmap on Photonic Crystals, Kluwer Academic, 2003. (288)

10.  ”nêr•F, gƒtƒHƒgƒjƒbƒNƒoƒ“ƒhh, gƒtƒHƒgƒjƒbƒNŒ‹»h,“ü–åƒrƒWƒ…ƒAƒ‹ƒTƒCƒGƒ“ƒX ƒiƒmƒeƒN‚Ì‚µ‚­‚Ý (‚–ö–M•v, ‘¼•Ò’˜), ŽÀ‹Æo”Å, 2004.

11.  ”nêr•F, g‚»‚Ì‘¼‚Ì”¼“±‘̃Œ[ƒU[h, ƒŒ[ƒU[ƒnƒ“ƒhƒuƒbƒN, ƒI[ƒ€ŽÐ, 2004.

12.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “dŽq•¨«EÞ—¿‚ÌŽ–“T, ’©‘q‘“X, 2004.

13.  T. Baba, gApplications of photonic crystals: general devicesh, Photonic Crystals: Physics and Applications (Eds. K. Inoue and K. Ohtaka), Springer Verlag, pp. 237-260, 2004.

14.  T. Baba, gPhotonic crystalsh, Encyclopedic Handbook of Integra rated Optics (Eds. K. Iga and Y. Kokubun), Marcel Dekker, 2004.

15.  ”nêr•F, g‚»‚Ì‘¼‚Ì”¼“±‘̃Œ[ƒU[h, ƒŒ[ƒU[ƒnƒ“ƒhƒuƒbƒN, ƒI[ƒ€ŽÐ, 2005.

16.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, Œõ‰ÈŠwŒ¤‹†‚ÌÅ‘Oü, “ú–{Šwp‰ï‹c, pp. 24-25, 2005

17.  ”nêr•F, gVCSEL‚ÆLED‚Ì“Á«‰ü‘Ph, gŠTàh, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚ƃVƒŠƒRƒ“×üh, gƒtƒHƒgƒjƒbƒNŒ‹»”÷¬ƒŒ[ƒUh, ƒtƒHƒgƒjƒbƒNŒ‹»‹Zp‚ÌV“WŠJ ---ŽY‹Æ‰»‚Ö‚Ì“®Œü--- (ì㲓ñ˜Y•ÒW), ƒV[ƒGƒ€ƒV[o”Å, pp. 28-36, 205-221, 250-258, 2005.

18.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒfƒoƒCƒX‚ÆŒõWÏ‹Zph, ‰ÈŠw—§‘“ú–{‚ð‘n‚é---Åæ’[ƒGƒŒƒNƒgƒƒjƒNƒX•ª–ì‚Å‹ÉŒÀ‚É’§‚Þ‹C‰s‚ÌŒ¤‹†ŽÒ‚½‚¿, “úŠ§H‹ÆV•·ŽÐ, pp. 103-110, 2006.

19.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “dŽq•¨«EÞ—¿‚ÌŽ–“T, ’©‘q‘“X, 2005.

20.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŠî‘bh, ƒiƒmƒIƒvƒeƒBƒNƒXEƒiƒmƒtƒHƒgƒjƒNƒX‚Ì‚·‚ׂÄi‰Í“c‘ŠÄCj, ƒtƒƒ“ƒeƒBƒAo”Å, pp. 42-48, 2006.

21.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Ì컂ƌõŠw“Á«h, ƒtƒHƒgƒjƒNƒXƒVƒŠ[ƒY, 2006.

22.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÆŒõ§Œäh, ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX---æ’[ŒõƒeƒNƒmƒƒW[‚ÌV“WŠJ i‹àŒõ, [’ÕÒj, ƒI[ƒ€ŽÐ, 2007.

23.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, Œõ‰ÈŠwŒ¤‹†‚ÌÅ‘Oü2, p. 23, 2009.

24.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚ƃXƒ[ƒ‰ƒCƒgh, gƒXƒ[ƒ‰ƒCƒg‚ÆŒõƒoƒbƒtƒ@[‰ž—ph, ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢‚ÌÅ‹ß‚Ìi“Wi–ì“ciŠÄCj, CMCo”Å, 2010.

25.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚ƃXƒ[ƒ‰ƒCƒgŠT—vCƒXƒ[ƒ‰ƒCƒg‚ÆŒõƒoƒbƒtƒ@[‰ž—ph, ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢‚ÌÅ‹ß‚Ìi“W, ƒV[ƒGƒ€ƒV[o”Å, pp. 81-97, 2011.

26.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚Ìi“W‚ƃXƒ[ƒ‰ƒCƒgh, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ“W–]h, “dŽqî•ñ’ÊMŠw‰ïƒnƒ“ƒhƒuƒbƒN’mŽ¯î•ñƒx[ƒX, ƒI[ƒ€ŽÐ, 2011.

27.  T. Baba, gPhotonic crystal waveguides and slow lighth, Handbook of Silicon Photonics (Series in Optics and Optoelectronics) (Eds. L. Vivien and L. Pavesi), CRC Press, pp. 298-321, 2013.

28.  ”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»", ŒõŠw‹Zp‚ÌŽ«“T(•“c, r–Ø, ‘å–Ø, •“c, X, –î“cŠL•Ò), ’©‘q‘“X, pp. 296-298, 2014.

‰ðà˜_•¶

1.     ˆÉ‰êŒ’ˆê, ”nêr•F, g–Ê”­ŒõƒŒ[ƒU‚̃uƒŒ[ƒNƒXƒ‹[hCƒGƒŒƒNƒgƒƒjƒNƒX, ƒI[ƒ€ŽÐCno. 8, pp. 89-92, 1993.

2.     ˆÉ‰êŒ’ˆê, ”nêr•F, g1.3mm‘Ñ–Ê”­ŒõƒŒ[ƒUh, ƒIƒvƒgƒƒjƒNƒXCvol. 12, no. 11, pp. 47-51, 1993D

3.     ”nêr•F, g–Ê”­ŒõƒŒ[ƒU‚ÌŒ»ó‚Æ«—ˆhCOPCOM News, vol. 12, no. 2, p. 15, 1995.

4.     ”nêr•F, g–ÊŒ^”¼“±‘̃Œ[ƒUh, ŒõŠw, vol. 25, no. 3, pp. 144-145, 1996.

5.     ”nêr•F, g”¼“±‘Ì”÷¬‹¤UŠí‚ÆŽ©‘R•úo§Œäh, ŒÅ‘Ì•¨—, vol. 32, no. 11, pp. 859-869, 1997.

6.     ”nêr•F, g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚ð—˜—p‚µ‚½’´‚Œø—¦Œõ‹Zph, Telecom FLONTIER, no. 20, pp. 20-29, 1998.

7.     ”nêr•F, g–Ê”­ŒõƒŒ[ƒU‚Ì•¨—‚Ɖۑèh, ŒõŠw, vol. 27, no. 10, pp. 112-117, 1998.

8.     ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚é”÷¬ƒŒ[ƒU‚ÆŒõ‰ñ˜Hh, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 81, no. 10, pp. 1067-1069, 1998.

9.     ”nêr•F, ’r“c[‹MC_‘ò®‹vCH. G. Blom, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚»‚̉ž—ph, ‰ž—p•¨—, vol. 67, no. 9, pp. 1041-1045, 1998.

10.  ”nêr•F, g”÷¬”¼“±‘Ì”­Œõ‘fŽq‚ÆŽü•Ó‹Zph, ƒ}ƒCƒNƒƒƒJƒgƒƒjƒNƒX, vol. 42, no. 4, 1998.

11.  ”nêr•F, g–¢—ˆ‚ð‘ñ‚­ƒtƒHƒgƒjƒbƒNŒ‹»h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒIƒvƒgƒjƒ…[ƒY, vol. 112, no. 4, pp. 50-53, 1999.

12.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹» --- V‚µ‚¢Œõ‹Zph, O plus E, vol. 21, no. 12, pp. 1524-1531, 1999.

13.  ”nêr•F, •yŽm“c½”V, âˆä“Ä, ŽR“c‘׎j, _Œ´_•½, gGaInAsP“d—¬’“üŒ^ƒfƒBƒXƒNƒŒ[ƒU‚Ì’´”÷¬‰»‚Ɖž—p‹Zph, ‰ž—p•¨—, vol. 68, no. 12, pp. 1353-1358, 1999.

14.  –ì“ci, ”nêr•F, ¬â‰p’j•ÒW, gƒtƒHƒgƒjƒbƒNŒ‹»ƒ[ƒhƒ}ƒbƒv --- Œ¤‹†‚ÌŒ»ó‚Æ¡Œã‚Ì“W–]h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ï, 2000.

15.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Þ—¿h, Electronic Ceramics, vol. 13, no. 9, pp. 19-24, 2000.

16.  ”nêr•F, [’J®Žu, âˆä“Ä, gƒ}ƒCƒNƒƒKƒCƒhh, O plus E, vol. 22, no. 10, pp. 1300-1306, 2000.

17.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Þ—¿‚Ɖž—p‹Zph,“dŽqî•ñ’ÊMŠw‰ïŽ, vol. 84, no. 3, pp. 172-176, 2001.

18.  ”nêr•F, g‹ÉŒÀ”÷¬Œõ‘fŽq‚ÌŒ¤‹†h, ^‹óƒWƒƒ[ƒiƒ‹, no. 75, pp. 34-35, 2001.

19.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»”­Œõ‘fŽq‚ÌŒ»óh, ƒIƒvƒgƒƒjƒNƒX, vol. 20, no. 7, pp. 192-196, 2001.

20.  ”nêr•F, ˆä‰º‹žŽ¡, ŽsìO”V, gƒvƒ‰ƒYƒ}ƒvƒƒZƒX‚É‚æ‚锼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‰ÁH‚Æ•\–ʈ—h, •\–ʉȊw, vol. 22, no. 11, pp. 710-714, 2001.

21.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹» --- V‚µ‚¢Œõ‹Zph, ’´¸–§, vol. 11, pp. 47-51, 2001. 

22.  ”nêr•F, guƒtƒHƒgƒjƒbƒNŒ‹»‚ÌÅVƒgƒŒƒ“ƒhv‰ðଓÁW‚ɂ悹‚Äh, ƒŒ[ƒU[Œ¤‹†, vol. 30, no. 2, p. 58, 2002.

23.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŒ»ó‚Æ«—ˆh, “úŒoæ’[‹Zp, no. 6, pp. 12-15, 2002.

24.  ”nêr•F, gƒIƒvƒgƒGƒŒƒNƒgƒƒjƒNƒXEŒõƒfƒoƒCƒXh, ŒõŠw, vol. 31, no. 5, pp. 237-238, 2002.

25.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚̃Cƒ“ƒpƒNƒgh, Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 40, no. 8, pp. 463-472, 2002.

26.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«•ª‰È‰ïŽ, vol. 9, no. 3, pp. 156-157, 2003.

27.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹» --- ‚»‚ÌŒ´—‚Ɖž—ph, “ú–{ŠwpU‹»‰ïŠwpŒŽ•ñ, vol. 56, no. 9, pp. 915-919, 2003.

28.  T. Baba, gPhotonic crystal and high index contrast structure devicesh, IEEE/LEOS News Letter, vol. 18, no. 3, pp. 11-12, 2004 web

29.  ”nêr•F, ’†ì“Ö¶, Έä—, gƒ}ƒCƒNƒƒfƒBƒXƒN‚É‚æ‚éƒtƒHƒgƒjƒbƒN•ªŽqƒŒ[ƒU --- V‚µ‚¢Œõ‹@”\‘fŽq‚Ö‚ÌŠú‘Ò---g, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 88, no. 2, pp. 105-109, 2004. pdf 

30.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œõ‹@”\‘fŽq‚Ì—DˆÊ«h, ‰ž—p•¨—, vol. 23, no. 2, pp. 167-172, 2005. pdf 

31.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, Œ»‘㉻Šw, no. 408, pp. 55-59, 2005.

32.  ”nêr•F, X‘å—S, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg¶¬h, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 89, no. 6, pp. 494-499, 2006. pdf

33.  –ì茪Œå, ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»/€Œ‹»”÷¬ƒŒ[ƒU‚ÆŽ©‘R•úo§Œäh, ƒŒ[ƒU[Œ¤‹†, vol. 34, no. 11, pp. 756-760, 2006.

34.  ”nêr•F, gŒõ‚ÌŒ‹»‚Æ‹¤‚Éh, ŠwpŒŽ•ñ, vol. 59, no. 5, pp. 47-48, 2006.

35.  T. Baba, gPhotonic crystals remember the lighth, Nature Photonics, vol. 1, no. 1, pp. 11-12, 2007.(60) pdf

36.  ”nêr•F, g‚‹üÜ—¦·ƒVƒŠƒRƒ“Œõ“±”g˜H‚ªŽÀŒ»‚·‚éŒõŽó“®ƒfƒoƒCƒXh, ƒŒ[ƒU[Œ¤‹†, vol. 35, 2007.

37.  ”nêr•F, gƒtƒHƒgƒjƒbƒNƒNƒŠƒXƒ^ƒ‹h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïŒõ‹Zp“®Œü’²¸•ñ‘, 2007.

38.  ”nêr•F, gƒVƒŠƒRƒ“”÷¬“±”g˜H‚Æ‚»‚̃fƒoƒCƒX‰ž—ph, ŒõŠw, vol. 37, no. 1, pp. 7-13, 2008. pdf

39.  T. Baba, gSilicon gets the green lighth, Nature Photon., vol. 3, no. 4, pp. 190-192, 2009. pdf

40.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, Œõ‰ÈŠwŒ¤‹†‚ÌÅ‘Oü2, p. 23, 2009.

41.  ”nêr•F, g‹‘å\‘¢•ªŽU‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg‹Zph, Telecom Frontier, no. 29, pp. 4-13, 2009.

42.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÅŒõ‚𑀂éh, ZENIS Magazine, no. 1, pp. 92-93, 2009. pdf

43.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, ƒGƒŒƒNƒgƒƒjƒNƒXŽÀ‘•Šw‰ïŽ, vol. 12, no. 5, pp. 458-463, 2009.

44.  ”nêr•F, g•ªŽU§ŒäƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚É‚æ‚éƒXƒ[ƒ‰ƒCƒgh, ƒŒ[ƒUŒ¤‹†, vol. 37, no. 8, pp. 572-577, 2009.

45.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg‚Æ‚»‚̉ž—ph, ƒpƒŠƒeƒB, vol. 24, no. 10, pp. 56-60, 2009. pdf

46.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚é’´‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ƒIƒvƒgƒƒjƒNƒX, no. 381, pp. 104-108, 2013 pdf

47.  ”nêr•F, H. C. Nguyen, Ž›“c—z—C, "ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zp‚É‚æ‚éƒtƒHƒgƒjƒbƒNŒ‹»Œõ•Ï’²Ší", ƒIƒvƒgƒƒjƒNƒX, vol. 390, pp. 79-83, 2014. pdf

48.  ”nêr•F, Ž›“c—z—C, H. C. Nguyen, "ƒtƒHƒgƒjƒbƒNŒ‹»Œõ•Ï’²Ší", O Plus E, vol. 36, no. 9, pp. 1011-1014, 2014. pdf

49.  ”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ‰ƒu‚Ì“ñ‚‚̉ž—p", Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 52, no. 10, pp. 11-17, 2014. pdf

50.  ”nêr•F, gƒiƒmƒXƒƒbƒgƒŒ[ƒU‚Ì‹ÉŒÀ“I‚ÈŒõ‹ÇÝ‚ð—˜—p‚·‚é’´‚Š´“xƒoƒCƒIƒ}[ƒJ[ƒZƒ“ƒTh, “ú–{ŠwpU‹»‰ï‰ÈŒ¤”ïNewS, vol. 2, p. 10, 2015. pdf

51.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚ðŽg‚Á‚½ƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 53, no. 625, pp. 30-35, 2015. pdf

52.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒŒ[ƒU‚̈ã—Éž—ph, O plus E, vol. 38, no. 2, pp. 136-138, 2016 pdf

53.  ”nêr•F, gƒiƒmƒŒ[ƒU‚̃Zƒ“ƒVƒ“ƒO‰ž—ph, ƒIƒvƒgƒƒjƒNƒX, no. 411, pp. 81-86, 2016. pdf

54.  ‹ß“¡Œ\—S, ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚É‚¨‚¯‚鋤“`”ÀE‹t“`”ÀƒXƒ[ƒ‰ƒCƒgŒnh, ‰ž—p•¨—, vol. 85, no. 7, 2016. pdf

55.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚é’´‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ‰»ŠwH‹Æ, vol. 68, no. 2, pp. 36-42, 2017.

56.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚̶‘̃Zƒ“ƒVƒ“ƒO‰ž—ph, ƒIƒvƒgƒƒjƒNƒX, vol. 425, no. 5, pp. 83-87, 2017. pdf

57.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ð—p‚¢‚½’´¬Œ^LiDARŠJ”­h, ŒõŠw, vol. 47, no. 3, pp. 100-105, 2018. pdf

58.  ”nêr•F, gŒ¤‹†Žº‚ð‘n‚éh, Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 56, no. 4, pp. 1-3, 2018 pdf

59.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg\‘¢‘Ì‚ð—˜—p‚µ‚½”ñ‹@ŠBŽ®ƒnƒCƒŒƒ]ŒõƒŒ[ƒ_[‚ÌŠJ”­h, ƒIƒvƒgƒƒjƒNƒX, no. 5, pp. 68-72, 2018 pdf

60.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg‹Zp‚ð—p‚¢‚½¬Œ^LiDAR‚ÌŠJ”­‚Æ‘ª‹—‹Zph, ŒŽŠ§ŽÔÚƒeƒNƒmƒƒW[, vol. 6, no. 2, pp. 12-15, 2018.

61.  ”nêr•F, gGaInAsP ”¼“±‘̃iƒmƒŒ[ƒU‚̃oƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, “dŽqî•ñ’ÊMŠw‰ïƒGƒŒƒNƒgƒƒjƒNƒXƒ\ƒTƒCƒGƒeƒBNews Letter, no. 172, 2019.

62.  ”nêr•F, gØŽèƒTƒCƒYƒ‰ƒCƒ_‚ÌŽÀŒ»‚ÉŒü‚¯‚Äh, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 102, no. 7, pp. 649-653, 2019. pdf

63.  ”nêr•F, gØŽèƒTƒCƒYƒ‰ƒCƒ_‚ÌŽÀŒ»‚ÉŒü‚¯‚Äh, ƒŒ[ƒU[Œ¤‹†, vol. 48, no. 2, pp. 73-82, 2020.

64.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg“±”g˜H‚ð—p‚¢‚½ƒr[ƒ€‘|ˆøƒfƒoƒCƒXh, O Plus E, vol. 42, no. 2, pp. 177-180, 2020.

65.  ”nêr•F, g”ñ‹@ŠBŽ®ƒ‰ƒCƒ_ƒ`ƒbƒv‚ð–ÚŽw‚µ‚Ä^ƒXƒ[ƒ‰ƒCƒg‚ƃvƒŠƒYƒ€ƒŒƒ“ƒY‚É‚æ‚éLŠpƒr[ƒ€•ÎŒüh, ŒõŠw, vol. 50, no. 6, p. 252, 2021 pdf

66.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚É‚¨‚¯‚éƒXƒ[ƒ‰ƒCƒg¶¬‚Æ‚»‚̉ž—ph, ƒIƒvƒgƒƒjƒNƒX, vol. 41, no. 483, pp. 96-100, 2022. pdf

67.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒgLiDARh, ƒIƒvƒgƒƒjƒNƒX, vol. 41, no. 490, pp. 71-75, 2022. pdf

68.  ”nêr•F, g¬Œ^E‚‘¬ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒgƒ}ƒbƒnƒcƒFƒ“ƒ_[•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 105, no. 11, pp. 1356-1360, 2022. pdf

69.  ”nêr•F, gƒr[ƒ€ƒXƒLƒƒƒ“Œ^FMCWƒ‰ƒCƒ_‚̃ƒ“ƒ`ƒbƒv‰»h, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 106, no. 2, pp. 136-142, 2023. pdf

70.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ð—p‚¢‚½’´¬Œ^ƒ‰ƒCƒ_[h, Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 61, no. 12, pp. 11-19, 2023 pdf

‘Û‰ï‹cµ‘Òu‰‰

1.     Y. Kokubun and T. Baba, gARROW and its application to integrated photonic devicesh, Third Optoelectronic Conf., Makuhari, no. 13B4-2, 1990.

2.     K. Iga and T. Baba, gSelf aligned fiber micro connectorsh, 11th Gradient-Index Optical Systems Topical Meeting, Rochester, no. GWC2, 1994.

3.     F. Koyama, T. Baba and K. Iga, gPresent status and future prospects of long wavelength surface emitting lasersh, 20th European Conf. Opt. Commun., Firenze, no. Tu.B.4.1, 1994.

4.     T. Baba and T. Matsuzaki, g2D photonic crystal with multiple refractive index stepsh, NATO Advanced Research Workshop gPhotonic Bandgap Materialsh, Crete, p. 18, 1995.

5.     T. Baba, gGaInAsP/InP photonic crystalsh, NATO Advanced Research Workshop gQuantum Optics in Wavelength Scale Structuresh, Corsica, no. VII-1, 1995.

6.     T. Baba, gPhotonic band and whispering gallery mode emittersh, 10th IEEE/LEOS Annual Meeting, San Francisco, no. WA-1, 1997.

7.     T. Baba, M. Ikeda, N. Kamizawa and H. G. Blom, gSemiconductor 2-D photonic crystalsh, 17th Electronic Materials Symposium, Izunagaoka, no. G1, 1998.

8.     T. Baba, gPhotoluminescence in GaInAsP/InP 2-D photonic crystalsh, Workshop on Electromagnetic Crystal Systems, Los Angels, no. IV-4, 1999.

9.     T. Baba, gUltra-small and ultra-low-threshold microdisk injection lasers with evanescent coupled elementsh, Int. Photon. Res. Conf., Santa Barbara, no. RTuB2, 1999.

10.  T. Baba, N. Fukaya and J. Yonekura, gObservation of light propagation in 2-D photonic crystal optical waveguides with bendsh, Int. Photon. Res. Conf., Santa Barbara, no. RTuE3, 1999.

11.  T. Baba, gLight emission and waveguiding in semiconductor photonic crystalsh, Int. Conf. Solid State Devices and Materials, Tokyo, no. D-8-4, 1999.

12.  T. Baba, gFabrication and characterization of photonic bandgap materialsh, Int. Conf. Ternary and Multinary Compounds, Taiwan, no. Th-B3-1, 1999.

13.  T. Baba, M. Fujita and A. Sakai, gMicrodisk-based Photonicsh, Int. Sympo. Ultra-Parallel Optoelectronics, Kawasaki, no. C-3, 2000.

14.  T. Baba, gControl of light emission and guiding in 2-D photonic crystalsh, Int. Workshop on Photonic and Electromagnetic Crystal Structures, Sendai, no. W2-2, 2000.

15.  T. Baba, N. Fukaya and D. Ohsaki, gLight propagation characteristics in defect waveguides in a photonic crystal statesh, NATO Advanced Research Workshop gPhotonic Crystals and Light Localizationh, Crete, no. Th-7, 2000.

16.  T. Baba, gPhotonic crystals by planar technologiesh, Optoelectronic Conf., Makuhari, no. 12D-1-3, 2000.

17.  T. Baba, gPhotonic microstructures --- microdisk lasers and photonic waveguidesh, IEEE/LEOS Annual Meeting, Puerto Rico, no. WK-1, 2000.

18.  T. Baba, gRecent development of microdisk lasers and waveguidesh, Int. Topical Meet. Indium Phosphide and Related Mat., Nara, no. Tu-B-2, 2001.

19.  T. Baba, gLight propagation characteristics of microguides in photonic crystal slabsh, Int. Workshop on Photonic and Electromagnetic Crystal Structures, St. Andrews, no. II-6, 2001.

20.  T. Baba, N. Fukaya and A. Motegi, gLight propagation characteristics in photonic crystal waveguidesh, Conf. on Laser and Electro-Optics Pacific Rim, Makuhari, no. TuA4-5, 2001.

21.  T. Baba, gPhotonic crystals and microlasersh, Asia-Pacific Radio Science Conf., Tokyo, no. D1-1-1, 2001.

22.  T. Baba, gPhotonic lasers and waveguidesh, Korean Photon. Conf., Taejon, 2001.

23.  T. Baba, gPhotonic micro/nanostructures for PBG and index confinementsh, Int. Sympo. Contemporary Photon. Technol., Tokyo, no. K-3, 2002.

24.  T. Baba and H. Ichikawa, gPhotonic crystal light extractor in light emitting devicesh, Optoelectronic and Commun. Conf., Yokohama, no. 9C2-1, 2002

25.  T. Baba, gLight transmission in photonic bandgap waveguides and photonic band crystalsh, SPIE gActive and Passive Optical Components for WDM Communication IIh, Boston, no. 4870-43, 2002.

26.  T. Baba, gPhotonic crystals and microlasersh, IEEE/LEOS Annual Meet., Glasgow, no. WS-1, 2002.

27.  T. Baba, K. Inoshita, D. Sano, A. Nakagawa and K. Nozaki, gMicrolasers based on photonic crystal concepth, SPIE "Photonic Crystal Materials and Devices", San Jose, no. 5000-05, 2003.

28.  T. Baba, gProgress in microdisk and related lasersh, Int. Sympo. Nanotechnology for Photonics and Opto-Electronics, Tokyo, no. 12, 2003.

29.  T. Baba, gPhotonic crystals and micro-/nano-lasersh, JSPS-Sweden Colloquium, Stockholm, no. 2-2, 2003.

30.  T. Baba, K. Inoshita, T. Matsumoto, H. Ichikawa and T. Iwai, gDevice applications of semiconductor photonic crystalh, Int. Sympo. Femto-Second Technol., Makuhari, no. TD-3, 2003.

31.  T. Baba, K. Inoshita, T. Matsumoto, D. Mori, H. Ichikawa and T. Iwai, gSemiconductor photonic crystal and nanostructure devicesh, IEEE/LEOS Opt. MEMS, Hawaii, no. WA-1, 2003.

32.  T. Baba, gSemiconductor photonic crystal devicesh, Int. Conf. Solid State Devices and Mat., Tokyo, no. F-7, 2003.

33.  T. Baba, gLight propagation and localization in photonic crystalsh, Progress in Electromagnetic Res. Sympo., Hawaii, no. 2003-10-14-2-10, 2003.

34.  T. Baba, gPhotonic crystals and high index contrast devicesh, IEEE/LEOS Annual Meet., Arizona, no. S102, 2003.

35.  T. Baba, gUltra-small light emitting devicesh, Fall Meet. Material Res. Soc., Boston, no. W6.4, 2003.

36.  T. Baba, gPhotonic crystals, an introductionh, Japanese-American Frontiers of Science, Shonan, no. 7-1, 2003.

37.  T. Baba, A. Nakagawa, D. Sano, K. Nozaki and S. Ishii, gRecent progress on microdisk lasersh, Int. Semicon. Laser Conf. 2004 Pre-Conf., Kobe, no. OPE2003-222, 2003.

38.  T. Baba and T. Matsumoto, gLight propagation in photonic crystal superprismsh, SPIE "Photonic Crystal Materials and Devices", San Jose, no. 5360-57, 2004.

39.  T. Baba, gPhotonic crystal applications to optoelectronic devicesh, Int. Sympo. Photonic and Electromagnetic Crystal Structures, Kyoto, no. Mo-A6, 2004.

40.  T. Baba, gPhotonic crystals and related photonic nanodevicesh, Int. Top. Meet. Indium Phosphide and Related Mat., Kagoshima, 2004.

41.  T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, gPurcell effect in photonic crystal nanocavityh, Optoelectronic and Commun. Conf., Yokohama, 2004.

42.  T. Baba, gRecent progress on semiconductor photonic crystal devicesh, Conf. Emerging Technol. Opt. Sci., Ireland, 2004.

43.  T. Baba, gSilicon photonic wire waveguidesh, SPIE "Nano-Engineering: Fabrication, Properties, Optics, and Devices", Denver, 2004.

44.  T. Baba, gActive and passive photonic crystal functional devicesh, European Conf. Opt. Commun., Stockholm, 2004.

45.  T. Baba, gNovel optoelectronic devices based on photonic crystalsh, Int. Workshop on Photonic Crystals, Taipei, 2004

46.  T. Baba, gPhotonic crystals and high index contrast structuresh, IEEE/LEOS Annual Meet., Puerto Rico, 2004.

47.  T. Baba, gUnique optoelectronic devices based on photonic crystalsh, IEEE/LEOS Annual Meet., Puerto Rico, 2004.

48.  T. Baba, T. Ide and S. Ishii, gMicrodisk lasers --- quantum-dot lasing and bistabilityh, SPIE Photonic West "Novel In-Plane Semiconductor Lasers IV", San Jose, no. 5738-35, 2005.

49.  A. Furukawa and S. Sasaki, M. Hoshi, A. Matsuzono, K. Morito and T. Baba, gHigh-power single-transverse-mode holey VCSELsh, SPIE Photonic West "Physics and Simulation of Optoelectronic Devices XIIIh, no. 5722-23, San Jose, 2005.

50.  T. Baba, gFast spontaneous emission and slow light propagation in photonic crystalsh, Quantum Electron. and Laser Sci. Conf., Baltimore, no. QWD-1, 2005.

51.  T. Baba, gSlow light engineering by chirped photonic crystal waveguidesh, Int. Sympo. Photonic and Electromagnetic Crystal Structures, Crete, no. F-1, 2005.

52.  T. Baba, gPhotonic crystal devicesh, Int. Conf. Mat. Advanced Technol., Singapore, no. J-2-IN5, 2005.

53.  T. Baba, gPhotonic nanostructure optoelectronic devicesh, Int. Mini-Conf. gSystem Construction of Global-Network-Oriented information Electronicsh, Sendai, no. B4-7, 2005.

54.  T. Baba, gPhotonic crystals and high index contrast structure devicesh, IEEE/LEOS Annual Meet., Sydney, no. SC102, 2005 (Short Course Lecture).

55.  T. Baba, T. Ide, S. Ishii, J. Tatebayashi, T. Iwamoto, T. Nakaoka and Y. Arakawa, gQuantum-dot lasing and photonic molecule behavior in microdisk lasersh, IEEE/LEOS Annual Meet., Sydney, no. ThZ1, 2005.

56.  T. Baba, gPhotonic crystalsh, Micro-Optic Conf., Tokyo, no. T5, 2005 (Tutorial Talk).

57.  T. Baba, gRecent progress on photonic crystal functional devicesh, Asia-Pacific Microwave Photon. Conf., Kobe, no. I-1, 2006.

58.  T. Baba, K. Nozaki and S. Ishii, gSemiconductor nanolasers and photonic moleculesh, IEEE Int. Conf. Transparent Optical Networks, Nottingham, no. Mo.A.2, 2006 (Plenary Talk).

59.  T. Baba and D. Mori, gPotential of slowlight in photonic crystalh, Asia-Pacific Opt. Commun., Gwangju, no. 6351-74, 2006.

60.  T. Baba, gPhotonic and optical phenomena in photonic crystals and their applicationsh, IEEE/LEOS Distinguished Lecturers Meet., Tokyo, no. 2, 2006.

61.  T. Baba, gControl of light emission and propagation in semiconductor photonic nanostructuresh, Int. Conf. Solid State Devices and Mat., Yokohama, no. B-1-1, 2006.

62.  T. Baba, gPhotonic crystal emitters and light control devicesh, IEEE Int. Semicon. Laser Conf., Hawaii, 2006 (Short Course Lecture).

63.  T. Baba, D. Mori, S. Kubo and T. Kawasaki, gSlow light engineering in photonic crystalsh, OSA Annual Meet. "Frontiers in Optics", Rochester, no. FTuI-1, 2006.

64.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Ottawa, no. 3, 2006.

65.  T. Baba and T. Matsumoto, gNegative refraction in photonic crystalsh, RIKEN Int. Nano-Photon. Sympo., Wako, no. 4, 2006.

66.  T. Baba, gState-of-the-art photonic nanostructure devicesh, Multiconf. Electron. and Photon., Mexico, no. 1, 2006 (Special Lecture).

67.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Torino, 2006.

68.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Rome, 2006.

69.  T. Baba and D. Mori, gSlowlight engineering in photonic crystalsh, J. Phys. D, 2007.

70.  T. Baba, gHow can we stop light ?h, Contemporary Photon. Technol., Rump Session: "Photonic Technologies towards the Next Decade", no. 6, 2007.

71.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Poland, 2007.

72.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Norfolk, 2007.

73.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Washington DC, 2007.

74.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Rochester, 2007.

75.  T. Baba, T. Matsumoto, K. Nozaki and D. Mori, gProgress of photonic crystal slab devicesh, Photon. Electromag. Crystal Structures, Monterey, no. 6, 2007.

76.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Albuquerque, 2007.

77.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Boston, 2007.

78.  T. Baba, D. Mori, T. Kawasaki, S. Kubo and H. Sasaki, gControlled slowlight in photonic crystalsh, OSA Slow and Fast Light Top. Meet., Salt Lake City, no. SWB1, 2007.

79.  T. Baba, gControlled slowlight and miniature devices based on Si photonics waveguidesh, IEEE/LEOS Int. Conf. Group IV Photon., Tokyo, no. FA1, 2007.

80.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE Advanced Packaging Symp., San Jose, 2007.

81.  T. Baba, gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Santa Clara Valley, 2007.

82.  T. Baba, D. Mori, T. Kawasaki, S. Kubo, and H. Sasaki, "Useful slow light in photonic crystal devices", SPIE Photonic West, San Jose, no. 6904-27, 2008.

83.  T. Baba, gRecent progress in photonic crystal devicesh, JST-DFG gNanoelectronicsh Japan-German Int. Workshop, Archen, no. 5-4, 2008.

84.  T. Baba, gToward photonic crystal optical bufferh, Conf. Laser and Electro-Optics, San Jose, no. CWH1, 2008.

85.  T. Baba, K. Nozaki, S. Kita and H. Watanabe, gPhotonic crystal nanolaser --- unique lasing and spontaneous emission characteristicsh, Euro. Mat. Res. Soc., Strasbourg, no. DTu2-1, 2008.

86.  T. Baba, T. Matsumoto and T. Asatsuma, gNegative refraction in photonic crystalsh, Int. Conf. Smart Mat., Structures & Sys., Sicily, no. B1-2-1, 2008.

87.  T. Baba, gControl of light emission and propagation in photonic crystalsh, Int. Nano-Optoelectronics Workshop (iNOW), Tokyo, Saiko and Shonan, no. M1-2, 2008.

88.  T. Baba, gPhotonic crystals and silicon photonicsh, Int. Nano-Optoelectronics Workshop (iNOW), Tokyo, Saiko and Shonan, no. RS2-5, 2008.

89.  T. Baba, gRecent progress on photonic crystal slow light deviceh, Asia Opt. Fiber Commun. & Optoelectronic Expo. & Conf., Shanghai, no. SuD1, 2008.

90.  T. Baba, H. Sasaki, J. Adachi, T. Kawasaki and D. Mori, "Dispersion-free slow light pulse and its functionalities", SPIE Photonic West, San Jose, no. 7226-3, 2009.

91.  T. Baba, H. Sasaki and J. Adachi, gTunable slow light pulse in photonic crystalsh, Int. Sympo. Photon. Electromag. Structures, Sydney, no. 100, 2009.

92.  T. Baba, gPhotonic nanostructures for functional devicesh, Japan-Finland Functional Materials Workshop, Helsinki, no. 1(3), 2009.

93.  T. Baba, S. Kita, and K. Nozaki, gPhotonic crystal nanolaser and its applicationsh, Int. Conf. Mat. Advanced Tech., Singapore, 2009.

94.  T. Baba, H. Sasaki, J. Adachi, N. Ishikura, Y. Hamachi, K. Yamada and Y. Saito, gDispersion-controlled slow light in photonic crystal waveguidesh, OSA Slow and Fast Light Top. Meet., Hawaii, no. JMA1, 2009.

95.  T. Baba, gSlow light with photonic crystalh, Int. Nano-Optoelectronics Workshop (iNOW), Tokyo, Stockholm, no. FrA1, 2009.

96.  T. Baba, J. Adachi, N. Ishikura, Y. Hamachi and Y. Saito, gControl of light speed in photonic crystal waveguide devicesh, Pacific Rim Conf. Laser and Electro-Optics, Shanghai, 2009.

97.  T. Baba, gSemiconductor microcavities for lasing and switching operationh, Int. Workshop on Digital Photonics with Semiconductor Ring and Disk Lasersh, Pisa, no. A1, 2009.

98.  T. Baba, gPhotonic crystal slow light devices --- tunable delay, nonlinearity, dynamic tuningh, Opt. Fiber Commun. Conf., San Diego, no. OMP1, 2010.

99.  T. Baba, gTunable slow light in photonic nanostructuresh, European Conf. Integ. Opt., Cambridge, no. ThI-1, 2010.

100.T. Baba, gLight control in photonic nanostructuresh, Int. Sympo. Organic and Inorganic Electron. Mat. Related Nanotech., Toyama, no. B2-1, 2010.

101.T. Baba and S. Kita, gPhotonic crystal nanolaser --- its fabrication, laser characteristics and bio-sensing applicationsh, Int. Conf. Laser Opt., St. Petersburg, no. ThR3-24, 2010.

102.T. Baba, gAdvances in photonics and nanophotonics based on Si technologiesh, Optoelectronic and Commun. Conf., Sapporo, no. WS2-1, 2, 2010.

103.T. Baba, S. Kita and K. Suzuki, gBio-sensing and nonlinear enhancement using photonic crystalsh, Int. Nano-Optoelectronics Workshop (iNOW), Beijing, 2010.

104.T. Baba, gOn-chip slow light with CMOS photonic crystalsh, European Conf. Opt. Commun., Turin, 2010.

105.T. Baba, gWhy must nanolasers be so small?h, IEEE Int. Semicon. Laser Conf., Kyoto, 2010.

106.T. Baba, gCMOS photonic crystal and slow lighth, SPIE Photonics West, San Francisco, no. 7943-10, 2011.

107.T. Baba, gNano-slot photonic crystal nanolaser and its bio-sensing applicationsh, German-Japanese Scientific-Technical Workshop on Quantum Dot and Nano-engineered Semiconductor Lasers and Nanoanalytics, Tokyo, no. L8, 2011

108.T. Baba, gPhotonic crystal devices fabricated by using CMOS-compatible processh, OFC IME Forum on Silicon Photonics, Los Angeles, no. 5, 2011.

109.T. Baba, gPhotonic crystal and related devices fabricated by CMOS-compatible processh, IEEE Int. Conf. Transparent Opt. Networks, Stockholm, no. ESPC I-1, 2011.

110.T. Baba, S. Kita, H. Abe, S. Hachuda, M. Narimatsu, S. Otsuka and K. Nozaki, gPhotonic crystal nanolasers with nanoslot structure for sensing applicationsh, SPIE Optics and Photonics, San Diego, no. 8095-30, 2011.

111.T. Baba, "Photonic nanostructure devices", IEEE Photonics Society LA Chapter Seminar Series, Los Angeles, no. 1, 2011.

112.T. Baba, gPhotonic crystal devices fabricated by CMOS compatible processh, Int. Conf. Solid State Dev. Mat., Nagoya, no. I-2-1, 2011.

113.T. Baba, gSlow light and bio-sensing with photonic crystalsh, IEEE Photonics Soc. Annual Meet., Virginia, no. ThR-1, 2011.

114.T. Baba, "Recent progress in on-chip slow light devices", SPIE Photonics West, San Francisco, no. 8273-45, 2012.

115.T. Baba, gAdvancement in photonic crystal slow light devices and silicon photonics integrated circuitsh, Int. Sympo. Photonic and Electromagnetic Crystal Structures, Santa Fe, no. 3B-3, 2012.

116.T. Baba, gPhotonic crystal nanoslot nanolaser for super-sensitivity bio-sensingh, IEEE Int. Conf. Transparent Opt. Networks, Coventry, no. We.A6.4, 2012.

117.T. Baba, gPhotonic nanostructure Tx/Rx devices for advanced optical networksh, IEEE Group IV Photonics, San Diego, no. ThC6, 2012.

118.T. Baba, "Photonic crystals in Si photonics and bio-photonics", IUMRS-Conf. Electron. Mat., Yokohama, no. B-9-I25-008, 2012.

119.T. Baba, gPhotonic crystal nanolasers for super-sensitivity bio-sensing applicationsh, Int. Semicon. Laser Conf. Satellite Sympo., Yokohama, no. E-3, 2012.

120.T. Baba and N. Ishikura, "Nanostructured silicon photonics devices fabricated by CMO-compatible process", Photon. Global Conf., Singapore, no. C12a740, 2012.

121.T. Baba, gSlow light devices in Si photonicsh, Int. Conf. Si Photonics and Satellite Schooling on Si Photonics, Tokyo, no. 2-1, 2013.

122.T. Baba and H. C. Nguyen, gCompact optical modulators in Si photonic crystalsh, SPIE Photonics West, San Francisco, no. 8630-11, 2013.

123.T. Baba, gCMOS-process-compatible photonic crystal slow light devicesh, SPIE Photonics West, San Francisco, no. 8636-32, 2013.

124.H. C. Nguyen, S. Hashimoto, M. Shinkawa and T. Baba, gCompact and fast photonic crystal silicon optical modulatorsh, Conf. Laser and Electro-Optics, San Francisco, no. CTu3F.1, 2013.

125.H. C. Nguyen, N. Yazawa, S. Hashimoto and T. Baba, gAthermal sub-100 mm Si photonic crystal optical modulatorh, Conf. Laser & Electro-Opt. Pacific Rim and Optoelectronic & Commun. Conf. / Photonics Switching, Kyoto, no. WM1-2, 2013.

126.T. Baba and H. C. Nguyen, gSlow light optical modulatorsh, OSA Integrated Photon. Res. Conf., Puerto Rico, no. IW4A-1, 2013.

127.T. Baba, N. Ishikura and K. Kondo, gSlow light tuning in photonic crystalsh, SPIE Optics and Photonics Congress, San Diego, no. 8808-46, 2013.

128.T. Baba, "Advanced Si photonics with photonic nanostructures", IEEE Int. Conf. Photon., Seattle, no. S1-1, 2013.

129.T. Baba, gPhotonic crystal modulators and related slow light devices in Si photonicsh, OSA FiO/LS integrated photonics, Orlando, 2013.

130.T. Baba, gPhotonic crystal nanolasers for sensing applicationsh, OSA FiO/LS integrated photonics, Orlando, 2013.

131.T. Baba, gPhotonic crystal technologies for practical applicationsh, Special Seminar at Harvard Univ., Boston, 2013.

132.T. Baba, "Photonic integrated circuits with slow light", SPIE Photonics West, San Francisco, no. 8998-9, 2014.

133.T. Baba, "Photonic crystal nanolaser biosensors", Int. Workshop Fab. Appl. Microstructured Opt. Dev., Yokohama, no. 10, 2014.

134.T. Baba, "Nanolaser and slow-light devices based on photonic crystals"CKavli Futures Symposium: Nanomaterials Science in Asian Perspective, Seoul, 2014.

135.T. Baba and K. Kondo, "Dynamic control of slow light pulses in photonic crystal waveguides", IEEE Int. Conf. Transparent Opt. Networks, Austria, 2014.

136.T. Baba and Y. Terada, gSlow light modulatorsh, SPIE Photonics West, San Francisco, no. 9367-16, 2015.

137.T. Baba and K. Kondo, gCo-propagating slow light pulse systemsh, SPIE Photonics West, San Francisco, no. 9378-11, 2015.

138.T. Baba and Y. Terada, gHigh-speed and compact photonic crystal optical modulatorsh, SPIE Optics and Optoelectronics, Prague, no. 9516-13, 2015.

139.T. Baba, gPhotonic crystal integrated opticsh, EMN Meeting on Optoelectronics, Beijing, no. B01, 2015.

140.T. Baba, K. Watanabe and Y. Kishi, gPhotonic crystal nanolaser bio-sensors for detecting environmental index and surface chargesh, IEEE Int. Conf. Transparent Opt. Networks, Budapest, no. Mo.B6.1, 2015.

141.T. Baba, gPhotonic crystal nanolasers for bio/medical applicationsh, Int. Nano-Optoelectronics Workshop (iNOW), Tokyo, no. ThA3, 2015.

142.T. Baba, gBio-sensing applications of photonic crystal nanolasersh, OSA Adv. Optoelectronics & Micro-/nano-Electronics, Hangzhou, 2015.

143.T. Baba, K. Kondo, "Recent progress in photonic crystal slow light devices", SPIE Photonics West, San Francisco, no. 9763-45, 2016.

144.T. Baba, gPhotonic crystal nanolaser sensors for bio and medical applicationsh, Annual World Cong. Smart Mat., Singapore, no. 403-2, 2016.

145.T. Baba, gNanolaser biosensorsh, Int. Sympo. Adv. Plasma Sci. Appl. Nitrides and Nanomat., Nagoya, no. 09aE01, 2016.

146.T. Baba, gPhotonic crystal nanolasers and its application to bio-sensingh, Int. Conf. Indium Phosphide & Related Mat., Toyama, no. TuB4-1, 2016.

147.T. Baba, gNanolasers and their bio-sensing applicationsh, Optoelectronics Commun. Conf. & Photon. Switch., Niigata, no. WS-3, 2016.

148.T. Baba, gSlow light devices in silicon photonicsh, Optoelectronics Commun. Conf. & Photon. Switch., Niigata, 2016.

149.T. Baba, gPractical applications of photonic bandgap devicesh, Int. Workshop Photon. Electron. Crystal Structures, York, no. 3, 2016.

150.T. Baba, gOn-chip auto-correlator using counter propagating slow light in photonic crystal waveguide with TPA-PD arrayh, IEEE Int. Conf. Transparent Opt. Networks, Girona, no. Mo.D6.1, 2017.

151.T. Baba and K. Kondo, gCo- and counter-propagating slow light and their applicationsh, Int. Conf. Metamaterials, Photonic Crystals and Plasmonics, Seoul, no. 4A38-6, 2017.

152.T. Baba, Y. Terada, Y. Hinakura, K. Hojo and H. Ito, gRecent progress in slow light modulators,h Advanced Electromagnetics Sympo., Seoul, no. 1A2-1, 2017.

153.T. Baba and K. Kondo, gLine beam scanner using slow-light waveguides in Si photonicsh, Int. Conf. Solid-State Devices and Materials, Sendai, no. H-8-04, 2017.

154.T. Baba, gPhotonic crystal nanolaser biosensors,h SPIE Photonics West, San Francisco, no. 10540-12, 2018 (Keynote).

155.T. Baba, gWide steering of sharp beam from photonic crystal slow light waveguide,h SPIE Photonics West, San Francisco, no. 10548-1, 2018.

156.H. Ito, T. Tatebe, H. Abe and T. Baba, "WDM Si Photonic crystal beam scanner for high-throughput parallel 3D sensing", Conf. Laser and Electro-Opt., San Jose, no. SM2B.5, 2018.

157.T. Baba, gNanophotonic lasers and their potential bio-applicationsh, Gordon Res. Conf. - Lasers in Micro, Nano and Bio Systems, Waterville Valley, no. Tu5, 2018.

158.T. Baba, gPhotonic crystal devices for LiDAR and biosensing applicationsh, Int. Conf. Photo-Excited Process and Applications, Vilnius, no.TU-PL-1, 2018. (Plenary)

159.T. Baba, gSi photonics PIC for LiDARh, Integrated Photon. Sys. Roadmap Int., Tokyo, no. 4, 2019 (Keynote).

160.T. Baba, gIontronic sensing using photonic crystal nanolasersh, SPIE Photonics West, San Francisco, no. 10927-62, 2019.

161.T. Baba, gToward LiDAR using Si photonics and slow lighth, SPIE Photonics West, San Francisco, no. 10934-32, 2019.

162.T. Baba, gPhotonic crystal devices for sensingh, Conf. Laser and Electro-Optics, San Jose, no. SW3J.1, 2019 (Tutorial).

163.T. Baba, gPhotonic crystal technology for datacom and LiDAR applicationsh, Optoelectronic and Commun. Conf., Fukuoka, no. TuD3-1, 2019 (Tutorial).

164.T. Baba, gDevelopment of non-mechanical beam steering and LiDAR based on photonic crystal and Si photonicsh, IEEE Int. Conf. Transparent Opt. Networks, Angers, no. Th.A6-2, 2019.

165.T. Baba, gSi photonic crystal beam steering devicesh, IEEE Int. Conf. Group IV Photon., Singapore, no. FA6, 2019.

166.T. Baba, gLiDAR: a key to AI-mobileh, Micro-Optic Conf., Toyama, no. SS-2, 2019 (Tutorial).

167.T. Baba, H. Ito, H. Abe, T. Tamanuki, Y. Hinakura, R. Tetsuya, J. Maeda, M. Kamata, R. Kurahashi and R. Shiratori, gSi PIC based on photonic crystal for LiDAR applicationh, Opt. Fiber Commun. Conf., San Diego, no. M4H.1, 2020.

168.T. Baba, gDevelopment of Si photonics LiDAR based on photonic crystal slow-light waveguidesh, ST Distinguished Lecturer Meet., On-line, 2020.

169.T. Baba, T. Tamanuki and H. Ito, gWide 2D optical beam steering in Si photonics only with thermo-optic effecth, Optoelectronic and Commun. Conf., On-line, 2020.

170.T. Baba, gDevelopment of photonic nanostructure devicesh, Quantum- & Nano-Photonics Seminar Series at KAIST, 2021.

171.T. Baba, gPhofonic crystal devices for sensing --- focusing on LiDAR applicationsh, Conf. Laser and Electro-Opt. Europe, Munich, no. CK.5-1, 2021 (Tutorial).

172.T. Baba, gPhotonic integration based on Si photonics and photonic crystalsh, Optoelectronic and Commun. Conf., Hong Kong, no. M3D.1, 2021.

173.T. Baba, gNon-mechanical beam steering and LiDAR application using Si photonics and slow lighth, METANANO, Georgia, 2021 (Keynote).

174.T. Baba, gDevelopment of on-chip LiDAR based on slow lighth, Int. Semicon. Laser Conf., Potsdam, no. SuP2.5, 2021.

175.T. Baba, gMicro- and nano-scale semiconductor lasersh, Int. Semicon. Laser Conf., Potsdam, 2021 (Plenary).

176.T. Baba, gIontronic bio-/chemical sensing using photonic crystal nanolasersh, Int. Workshop Microcavities & Their Appl., Hong Kong, 2022.

177.T. Baba, gOn-chip FMCW LiDAR with slow light grating beam scannerh, Int. Conf. Nano-Photonics and Nano-Optoelectronics, Yokohama, 2022 (Keynote).

178.R. Nakamura, T. Nakama, A. Balčytis, T. Ozawa, Y. Ota, S. Iwamoto, H. Ito and T. Baba, gTopological modes observed in Si photonics SSH integrated circuith, Conf. Laser and Electro-Opt. Pacific Rim, Sapporo, no. CThA8D-02, 2022.

179.T. Baba, gFMCW LiDAR incorporating slow light grating beam scannersh, European Conf. Opt. Commun., Basel, no. Th1F.1, 2022 (Keynote).

180.T. Baba, gChallenges toward Si photonics solid-state FMCW LiDARh, Int. Conf. Expo, Lasers, Optics & Photonics, Valencia, no. 15, 2022 (Plenary Talk).

181.S. Suyama and T. Baba, gEfficient SLG optical beam scanner and 4D LiDAR actionh, Int. Conf. Expo, Lasers, Optics & Photonics, Valencia, no. 24, 2022.

182.T. Nakama, R. Nakamura, A. Balčytis, T. Ozawa, Y. Ota, S. Iwamoto, H. Ito and T. Baba, gSSH topological photonic integrated circuit in Si photonicsh, Int. Conf. Expo, Lasers, Optics & Photonics, Valencia, no. 25, 2022.

183.S. Hachuda and T. Baba, gPhotonic crystal nanolasers and high-performance biosensingh, Int. Conf. Expo, Lasers, Optics & Photonics, Valencia, no. 27, 2022.

184.T. Baba, gSolid state LiDARh, Opt. Fiber Conf., San Diego, no. M2C.4, 2023 (Tutorial).

185.T. Baba, gSolid-state LiDAR equipped with photonic crystal beam scannerh, Int. Sympo. Photonic and Electromagnetic Crystal Structures, Tokyo, no. 29-A-01, 2023.

186.T. Baba, gSi photonics FMCW LiDAR with solid-state beam scannerh, Optoelectronic and Commun. Conf., Shanghai, no. OECC2023-0320-91, 2023

187.T. Baba, gDevelopment of on-chip LiDAR with Si photonics platformh, Asia-Europe Silicon Photonics Symposium and Course, Zhejiang, no. 11, 2023.

188.T. Baba, gSilicon photonics solid-state FMCW LiDARh, AMF Silicon Photonics Summit, Tokyo, no. 4, 2023.

189.T. Baba, gOn-chip FMCW LiDAR with Si photonics and slow light gratingh, Asia Pacific Laser Symposium, Hakodate, no. OP-02, 2023.

190.T. Baba, gSolid-state FMCW LiDAR in Si photonicsh, Int. Sympo. Imaging, Sensing, and Opt. Memoryh, Takamatsu, no. Mo-G-02, 2023.

191.T. Baba, gSilicon photonics solid-state LiDAR with slow-light grating beam scannerh, Int. Conf. Opt. Photon. Lasers, Hiroshima, no. 7, 2023. (Keynote)

192.T. Baba, gChallenges toward Si photonics solid-state LiDARh, Int. Conf. Adv. Mat. Dev., Jeju, no. Plenary-11, 2023 (Plenary).

193.T. Baba, gOn-chip LiDAR sensor with slow-light scanner and swept laser sourceh, SPIE Photonics West, San Francisco, no. 12912-60, 2024.

194.T. Baba, gNonmechanical slow-light grating scanner loaded Si photonics FMCW LiDARh, IEEE Int. Conf. Transparent Opt. Networks, Bari, 2024.

195.T. Baba and T. Tamanuki, gOn-chip LiDAR with slow-light beam scanner and wavelength-swept sourceh, Conf. Laser and Electro-Optics Pacific Rim, Incheon, 2024.

Šw‰ï‘S‘‘å‰ïµ‘Òu‰‰

1.    ”nêr•F, ’r“c[‹MC_àV®‹v, gGaInAsP/InP 2ŽŸŒ³”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»h, H‹G“dŽqî•ñ’ÊMŠw‰ï‘S‘‘å‰ï, no. SC-4, 1997.

2.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Þ—¿h, “d‹CŠÖŒWŠw‰ï“ŒŠCŽx•”˜A‡‘å‰ïuŒõƒGƒŒƒNƒgƒƒjƒNƒX‚É‚¨‚¯‚éŋ߂̘b‘èvƒVƒ“ƒ|ƒWƒEƒ€, 2000.

3.    ”nêr•F, g”÷¬ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ¡Œã‚Ì“W–]h, ƒŒ[ƒUŠw‰ïŠwpu‰‰‰ï, no. F-3, 2001.

4.    ”nêr•F, g“±”gA”­Œõ§ŒäF‰½‚ªŒ©‚¦‚Ä‚«‚½‚©Hh, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. SC-4, 2001.

5.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éŒõ“`”ÀE”­Œõ§Œäh, “ú–{•¨—Šw‰ïH‹Gu‰‰‰ï, no. 19a-RF-7, 2001.

6.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒX‚ÌV‚µ‚¢ŽŽ‚Ýh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒAƒeƒB‘å‰ï, no. SC-1-11, 2003.

7.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‰ž—p‚ÌŒ»ó‚Æ“W–]h, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 28a-ZM-1, 2004.

8.    ”nêr•F, gƒX[ƒp[ƒvƒŠƒYƒ€‚̉ž—p‚Æ«—ˆ“W–]h, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 28p-ZM-6, 2004.

9.    ”nêr•F, gSi×ü‚É‚æ‚é1.5mm‘ÑŒõ“±”g˜Hh, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 29p-ZZ-6, 2004.

10. ”nêr•F, gŽŸ¢‘ãŒõ’ÊM‚ւ̃tƒHƒgƒjƒbƒNŒ‹»‹Zph, t‹G‰ž—p•¨—Šw‰ïu‰‰‰ï, no. 30a-ZH-4, 2005.

11. ”nêr•F, X‘å—S, gƒtƒHƒgƒjƒbƒNŒ‹»Œõƒoƒbƒtƒ@[Eƒƒ‚ƒŠ[‚̉”\«h, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 8a-ZE-4, 2005.

12.    ”nêr•F, gƒVƒŠƒRƒ“”÷¬“±”g˜HŒõƒfƒoƒCƒXh,‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 6p-C-5, 2007.

13.    ”nêr•F, —L“c—^Šó, gƒtƒ@ƒEƒ“ƒhƒŠ[ƒT[ƒrƒX‚ÌŒ¤‹†ŠJ”­‚ւ̃Cƒ“ƒpƒNƒg‚ÆŒ»ó‚̉ۑèh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-2-14, 2009.

14.    ”nêr•F, gƒiƒm\‘¢ƒtƒHƒgƒjƒNƒXƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2011

15.    H. C. Nguyen, ’†–ì—T–ç, Vì‹G, Αq“¿—m, ”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚‘¬Œõ•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2011.

16.    ”nêr•F, –kãÄ‘¾, ‰H’†“cËŽi, ‘å’ËãÄ‘¾, ˆ¢•”hŽm, ¬¼“¹³, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-1-10, 2011.

17.    —é–ØŒbŽ¡˜Y, –ΘC«“T, ”nêr•F, gƒJƒ‹ƒRƒQƒiƒCƒhƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜HƒXƒ[ƒ‰ƒCƒgƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, 2011 .

18.    –kãÄ‘¾, ‘å’ËãÄ‘¾, ‰““¡’B˜Y, ¼“‡Šì–¾, ŽOàVO–¾, ”nêr•F, gƒiƒmƒXƒƒbƒgƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚é’´‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 25p-KA-1, 2011.

19.    H. C. Nguyen, ’†–ì—T–ç, Vì‹G, Αq“¿—m, ”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚‘¬Œõ•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, no. C-3-51, 2011.

20.    ”nêr•F, gƒtƒHƒgƒjƒbƒNƒfƒoƒCƒX»ì‚É‚¨‚¯‚éƒVƒŠƒRƒ“ƒtƒ@ƒu‚Ì—˜—ph, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-1-7, 2012.

21.    Αq“¿—m, ”nêr•F, ‘qŽ‰hˆê, ”[•x‰ë–ç, gƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg“±”g˜H‚É‚æ‚é‚•ª‰ð”\‰Â•Ï’x‰„‚Æ‚»‚̉ž—ph, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. C3-75, 2012.

22.    H. C. Nguyen, Vì‹G, Αq“¿—m, ”nêr•F, g100 mm’·ˆÈ‰º‚ÅL‘шæ‚È10 Gb/s SiƒtƒHƒgƒjƒbƒNŒ‹»MZIŒ^Œõ•Ï’²Šíh, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 13a-C5-1, 2012.

23.    ”nêr•F, ‰H’†“cËŽi, “n粌h‰î, ˆé–ìr¬, ‘å’ËãÄ‘¾, –kãÄ‘¾, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚é‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. C-4-22, 2013.

24.    Ž›“c—z—S, —‘q—z‰î, –kžŠŒbŽq, Œš•”’m‹I, ”nêr•F, gL‚¢“®ìƒXƒyƒNƒgƒ‹‚ð—L‚·‚鬌^OOKEQPSKƒtƒHƒgƒjƒbƒNŒ‹»•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. C-4-19, 2016.

25.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚̃oƒCƒIEˆã—Éž—ph, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-3-1, 2016.

26.    Ž›“c—z—SC—‘q—z‰îC–kžŠŒbŽqCŒš•”’m‹IC”nêr•F, gƒXƒ[ƒ‰ƒCƒg‚ð—˜—p‚µ‚½¬Œ^SiƒtƒHƒgƒjƒbƒNŒ‹»•Ï’²Šíh, ƒŒ[ƒU[Šw‰ï, 2017.

27.    T. Baba, gPhotonic crystal nanolaser biosensorsh, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 16p-C301-1, 2016.

28.    ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ƃtƒHƒgƒjƒbƒNŒ‹»h, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 16p-F204-6, 2017.

29.    ”nêr•F, “n•”H, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚̶‘̃Zƒ“ƒVƒ“ƒO‰ž—p,h ƒŒ[ƒU[Šw‰ï, no. S6-7, 2018.

30.    ”nêr•F, gƒXƒ[ƒ‰ƒCƒg‚ð—˜—p‚·‚éƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXLiDAR‚ÌŠJ”­h, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-2-4, 2018.

31.    ”nêr•F, gƒXƒLƒƒƒi: Si‚ÅŒõ‚𑀂éh, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 18p-141-4, 2018.

32.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒTh, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 20p-232-1, 2018.

33.    ”nêr•F, ˆ¢•”hŽm, ˆÉ“¡Š°”V, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXLiDAR‚ÌŠJ”­h, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2019.

Šw‰ï“™Œ¤‹†‰ïµ‘Òu‰‰

1.       ”nêr•F, gMicrocavity semiconductor lasersh, “d‹CŠw‰ïŽŸ¢‘ãŒõƒfƒoƒCƒXŒ¤‹†‰ï, no. 2, 1996.

2.       ”nêr•F, g‹ÉŒÀ”÷¬Œõ‘fŽq‚ƃ}ƒCƒNƒƒ}ƒV[ƒ“‚ð—p‚¢‚½Žü•Ó‹Zph, _“Þ쌧ŽY‹Æ‹Zp‘‡Œ¤‹†ŠŽYŠwŒöŒð—¬Œ¤‹†”­•\‰ï, A, 1997.

3.       ”nêr•F, g”÷¬”¼“±‘Ì”­Œõ‘fŽq‚ÆŽü•Ó‹Zph, “ú–{ŽžŒvŠw‰ïŒ¤‹†‰ï, no. 1, 1998.

4.       ”nêr•F, g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»h, ‰ž—pŽ¥‹CŠw‰ïŒõƒXƒsƒjƒNƒXŒ¤‹†‰ïuƒtƒHƒgƒjƒbƒNÞ—¿‚ÆŽ¥‹CŒõŠw‚Ö‚Ì“WŠJv, no. 2C1998.

5.       ”nêr•F, h”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚ÌŒ»ó‚Æ«—ˆh, “ú–{H‹Æ‹ZpU‹»‹¦‰ïƒiƒm\‘¢•¨Ž¿Œ¤‹†‰ï, no. 1, 1998.

6.       ”nêr•F, g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚Ì–¢—ˆ‘œh, ƒ}ƒCƒNƒ‰»Šw§˜b‰ï, no. 2, 1998.

7.       ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, V‰»Šw”­“W‹¦‰ïƒNƒ‰ƒXƒ^[E’´”÷—±Žq•ª‰È‰ïu‰‰‰ï, no. 2, 1998.

8.       ”nêr•FC•yŽm“c½”VCâˆä“Ä, ŽR“c‘׎j, _Œ´_•½, gGaInAsP’´”÷¬ƒfƒBƒXƒNƒŒ[ƒU‚Ì“d—¬“®ì“Á«‚Æ‚»‚̉ž—ph, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«Œ¤‹†‰ï, no. 6, 1999.

9.       ”nêr•F, g‹ÉŒÀ”÷¬”¼“±‘ÌŒõ‘fŽq‚Æ‚–§“xŒõ‰ñ˜HhCŒõŽY‹Æ‹ZpU‹»‹¦‰ïŽŸ¢‘ãŒõƒiƒmƒƒ‚ƒŠ„i‹@\Œ¤‹†‰ï, no. 1, 1999.

10.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ð—˜—p‚µ‚½ŒõWÏ‹Zph, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïOEICEŒõƒCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“‹Zp§’k‰ï, 1999.

11.    ”nêr•F, g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»”­Œõ‘fŽq‚ÆŒõ”g‰ñ˜Hh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ï‘æ2‰ñuƒtƒHƒgƒjƒbƒNŒ‹»‚Ìi“W‚ÆŽY‹Æ‰ž—p‚̉”\«vƒtƒH[ƒ‰ƒ€, no. 2-2, 1999.

12.    ”nêr•F, [’J®ŽuC•Ä‘q~, gƒtƒHƒgƒjƒbƒNŒ‹»Œõ”g‰ñ˜Hh, “dŽqî•ñ’ÊMŠw‰ïŒõWσGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, OPE99-1, pp. 1-6, 1999.

13.    ”nêr•F, g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚Ì“®Œü‚Ɖž—ph, “dŽqî•ñ’ÊMŠw‰ïWÏŒõƒfƒoƒCƒX‹ZpŒ¤‹†‰ï, no. R-3, 1999.

14.    ”nêr•F, h”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚ÌŒ»ó‚Æ«—ˆh, “ú–{ŠwpU‹»‰ïu”¼“±‘̂̉ÁH‚Ɖž—pvŒ¤‹†‰ïCno. 2, 1999.

15.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œõ‘fŽqh, “ú–{‰t»Šw‰ïu‰t»ƒtƒHƒgƒjƒNƒXEŒõƒfƒoƒCƒXŒ¤‹†ƒtƒH[ƒ‰ƒ€v, no. 1, 1999.

16.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œõ‹Zph, ‘ˆî“c‘åŠwƒ}ƒCƒNƒ‹ZpŒ¤‹†‰ï, no. 1, 1999.

17.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ð—p‚¢‚½“±”g˜H»ìhC“ú–{ŒõŠw‰ïuŒõ“±”g˜H‚ÆŒõ’ÊM|Šî‘bE‰ž—pE“W–]|vŒ¤‹†‰ï, no. 8, 1999.

18.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃiƒmƒtƒHƒgƒjƒNƒXh, ¸–§HŠw‰ï’´¸–§‰ÁHê–匤‹†‰ïuƒtƒHƒgƒjƒbƒNŒ‹»“ÁWv, no. 2, 2000.

19.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Ì¢ŠEh, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«Œ¤‹†‰ï, no. 1, 2000.

20.    ”nêr•F, –ì“ci, ¬â‰p’j, gƒtƒHƒgƒjƒbƒNŒ‹»‹Zpƒ[ƒhƒ}ƒbƒvh, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«Œ¤‹†‰ï, no. 7, 2000.

21.    ”nêr•F, g”÷¬ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ¡Œã‚Ì“W–]h, ƒŒ[ƒUŠw‰ïŠwpu‰‰‰ï, no. F-3-2, 2001.

22.    ”nêr•F, gƒtƒHƒgƒjƒbƒNƒŒ[ƒUh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïŒõÞ—¿E‰ž—p‹ZpŒ¤‹†‰ï, no.2, 2001.

23.    ”nêr•F, •yŽm“c½”V, âˆä“Ä, [’J®Žu, ŽsìO”V, –Ζؕà, gƒfƒBƒXƒNŒ^ŒõWÏ‘fŽqh, “dŽqî•ñ’ÊMŠw‰ïŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, vol. 101, no. 92/OPE2001-1, pp. 1-6, 2001. 

24.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Ì“WŠJh, ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ïƒtƒHƒgƒjƒbƒNƒeƒNƒmƒƒW[ƒVƒ“ƒ|ƒWƒEƒ€, no. 6, 2001.

25.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÆŠÖ˜A‹Zph, “ú–{ŠwpU‹»‰ïŒõƒGƒŒƒNƒgƒƒjƒNƒX‘æ130ˆÏˆõ‰ï, no. 4, 2001.

26.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚‹üÜ—¦·”÷¬ŒõŠw‘fŽqh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒiƒmƒtƒHƒgƒjƒNƒX§’k‰ï, no. 3, 2001.

27.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»’†‚ÌŒõ“`”Àh, ‰ž—p•¨—Šw‰ïŠÖ¼Žx•”ƒiƒmƒtƒHƒgƒjƒNƒXƒZƒ~ƒi[, 2001.

28.    ”nêr•F, g‚¸“xƒŠƒ\ƒOƒ‰ƒtƒB‹Zp‚ð—p‚¢‚½ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ƒfƒoƒCƒXh, “ú–{H‹Æ‹ZpU‹»‹¦‰ïŽŸ¢‘ナƒ\ƒOƒ‰ƒtƒB‹ZpŒ¤‹†‰ï, 2001.

29.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚¨‚¯‚éŠeŽíŒõ“`”À‚ƃfƒoƒCƒX‰ž—ph, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNŒ‹»ƒVƒ“ƒ|ƒWƒEƒ€uŠî‘bŠî”ÕŒ¤‹†‚©‚çŽY‹Æ‰ž—p‚Öv, no. 3, 2002.

30.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÆŒõ’ÊMƒfƒoƒCƒX‚ւ̉ž—ph, ƒŒ[ƒUŠw‰ïƒŒ[ƒUƒGƒLƒXƒ|2002“Á•ÊƒZƒ~ƒi[, no. O-2, 2002.

31.   ”nêr•F, ˆä‰º‹žŽ¡, –Ζؕà, ˜aò“N˜Y, gICPƒGƒbƒ`ƒ“ƒO‹Zp‚ƃtƒHƒgƒjƒbƒNŒ‹»h, ‰ž—p“dŽq•¨«Œ¤‹†‰ï, no. 3, 2002. 

32.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œ¤‹†‚ÌŒ»ó‚Æ«—ˆ“W–]h, “Á‹–’¡‹ZpŒ¤CƒZƒ~ƒi[, 2002.

33.    ”nêr•F, hƒtƒHƒgƒjƒbƒNŒ‹»‚ƃ}ƒCƒNƒƒŒ[ƒUh, _“Þì‰ÈŠw‹ZpƒAƒJƒfƒ~[ƒtƒHƒgƒjƒNƒX‚ÌŠî‘b‚ÆV“WŠJƒR[ƒX, 2003. .

34.    ”nêr•F, g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚Ì•¨—‚ÆŒõƒfƒoƒCƒX‰ž—p‹y‚ÑSiŒõ“±”g˜Hh, ‘ˆî“c‘åƒiƒmƒeƒNƒtƒH[ƒ‰ƒ€ƒ}ƒCƒNƒEƒiƒmƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 1, 2003.

35.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚郌[ƒU”­U‚ÆŒõ§Œäh, “dŽqî•ñ’ÊMŠw‰ï’´‚‘¬ƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 3, 2003.

36.    ”nêr•F, gƒiƒmƒeƒNƒmƒƒW[‚ð—p‚¢‚½ƒtƒHƒgƒjƒbƒNŒ‹»ì»h, ‚•ªŽqŠw‰ïƒiƒm‚•ªŽqƒ[ƒNƒVƒ‡ƒbƒv, no. 2, 2003.

37.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŒ´—‚Ɖž—ph, “dŽqî•ñ’ÊMŠw‰ïƒAƒ“ƒeƒiE“`”ÀŒ¤‹†‰ï, no. 13, 2003.

38.    ”nêr•F, gPC‚ÆHIC‚Ì‘_‚¢‚Ʊ‚Ý•ª‚¯h, “dŽqî•ñ’ÊMŠw‰ïWÏŒõƒfƒoƒCƒX‹ZpŒ¤‹†‰ï, no. 11, 2003.

39.    ”nêr•F, [àV—³•F, gSi×üŒõ“±”g˜H‚ÌŒ»ó‚Æ«—ˆ“W–]h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïOEICEŒõƒCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“‹Zp§’k‰ï, no. 1, 2003.

40.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ×üŒõ“±”g˜H‚ÌŒ¤‹†“®Œü‚Æ“W–]h, “dŽqî•ñ‹ZpŽY‹Æ‹¦‰ïƒtƒHƒgƒjƒbƒNƒlƒbƒgƒ[ƒNƒfƒoƒCƒX‹Zpê–åˆÏˆõ‰ï, no. 1, 2003.

41.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃ}ƒCƒNƒƒŒ[ƒU‚Ì¢ŠEh, iàj“Œ“d‹L”O‰ÈŠw‹ZpŒ¤‹†Š‹L”Ou‰‰‰ï, no. 1, 2003.

42.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃiƒm\‘¢ƒtƒHƒgƒjƒNƒX‚Ì¢ŠEh, “dŽqî•ñ’ÊMŠw‰ï“Œ‹žŽx•”Šw¶‰ï, no. 2, 2003.

43.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï2004ƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, no. I-8, 2004.

44.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃtƒHƒgƒjƒbƒNƒiƒm\‘¢‚ÌV‚½‚ȃfƒoƒCƒX‰ž—ph, “dŽqî•ñ’ÊMŠw‰ïE“Œ‹žŽx•”uƒtƒHƒgƒjƒbƒNƒNƒŠƒXƒ^ƒ‹EŠî‘b‚©‚绕i‚Ü‚ÅvƒVƒ“ƒ|ƒWƒEƒ€, no. 5, 2004.

45.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚‹üÜ—¦·ŒõƒfƒoƒCƒXh, “Œ‹žH‹Æ‘åŠw¸Œ¤ƒZƒ~ƒi[, 2004.

46.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ŒõƒfƒoƒCƒXh, “Œ‹žH‹Æ‘åŠw¸Œ¤ƒVƒ“ƒ|ƒWƒEƒ€uƒtƒHƒgƒjƒbƒNƒlƒbƒgƒ[ƒNƒfƒoƒCƒX‚ÌV“WŠJ(3)v, no. 3, 2004.

47.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚̃fƒoƒCƒX‹Zp‚ւ̉ž—ph, “ú–{‘‡Œ¤‹†ŠƒiƒmƒfƒoƒCƒX‹Zp’²¸ˆÏˆõ‰ï, no. 1, 2004.

48.    ”nêr•F, gŒõ”gƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“---ƒtƒHƒgƒjƒbƒNŒ‹»‚ð—á‚É‚µ‚Äh, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, 2004.

49.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃ}ƒCƒNƒƒŒ[ƒUh, _“Þì‰ÈŠw‹ZpƒAƒJƒfƒ~[uæ’[ƒtƒHƒgƒjƒNƒXvƒR[ƒX, 2004.

50.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒXh, “ú–{ŠwpU‹»‰ï‘æ130ˆÏˆõ‰ïŒ¤‹†‰ï, no. 2, 2004.

51.    ”nêr•F, gŒõ”gƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“---ƒtƒHƒgƒjƒbƒNŒ‹»‚ð—á‚É‚µ‚Äh, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, no. 2-1, 2004.

52.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŠî‘bh, ˆ®ÉŽq‰ž—p•¨—ŠwuÀ, 2004.

53.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒX‚ÌŒ»ó‚Ɖۑèh, ƒtƒƒ“ƒeƒBƒAƒvƒƒZƒXŒ¤‹†‰ï, no. 2-1, 2004.

54.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒX‚ÌŒ»ó‚Æ«—ˆ“W–]h, ƒjƒ…[ƒKƒ‰ƒXƒtƒH[ƒ‰ƒ€§’k‰ï, 2004.

55.    ”nêr•F, g”¼“±‘Ì”÷×\‘¢ƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚»‚̉ž—ph,ƒTƒ€ƒR”––Œ‹ZpƒZƒ~ƒi[, 2004.

56.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œ¤‹†‚Ɖž—p‚ÌÅV“®Œüh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒ}ƒ“ƒXƒŠ[ƒZƒ~ƒi[, 2004.

57.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚¨‚¯‚é’áŒQ‘¬“x‚Ì—˜—ph, —ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ïuƒtƒHƒgƒjƒbƒNŒ‹»‚Ì•¨—‚Ɖž—pv, no. 8, 2005.

58.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï2004ƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, no. I-8, 2005.

59.    ”nêr•F, g‚±‚±‚Ü‚Åi‚ñ‚¾ƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒXŒ¤‹†h, ƒŒ[ƒUƒGƒLƒXƒ|2005, no. I-1, 2005.

60.    ”nêr•FC–ΖؕàC‘å–앶²C²X–ØN•ãC[àV’B•F, gƒVƒŠƒRƒ“×ü“±”g˜HŒõƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ïƒVƒŠƒRƒ“EƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. SIPH2004-18, 2005.

61.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚»‚ÌŒ´—‚Æ«Ž¿ –h, _“Þì‰ÈŠw‹ZpƒAƒJƒfƒ~[uæ’[ƒtƒHƒgƒjƒNƒXvƒR[ƒX, 2005 .

62.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌÅ‹ß‚Ìi“Wh, “dŽqî•ñ’ÊMŠw‰ï’´‚‘¬ŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 2, 2005.

63.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œõƒoƒbƒtƒ@[‚̉”\«h, î•ñ’ÊMŒ¤‹†‹@\Œõƒoƒbƒtƒ@[ƒZƒ~ƒi[, 2005.

64.    ”nêr•F, gHigh Index ContrastŒõ‹@”\ƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ïŒõ’ÊMƒVƒXƒeƒ€ƒVƒ“ƒ|ƒWƒEƒ€, µ‘Òu‰‰(3), 2005.

65.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg‚Ì“W–]‚ÆŒ»óh, —ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, pp. 26-27, 2006.

66.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï2006ƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, no. I-8, 2006.

67.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œõ‰ñ˜H‚ÌŠî‘b‚Ɖž—ph, “ú–{ŒõŠw‰ï‘æ32‰ñ“~ŠúuK‰ï, no. 2-2, 2006.

68.    ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒXŽÀ‘•h, YUVECŽÀ‘•‹ZpŒ¤‹†‰ï, no. 2, 2006.

69.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Fŋ߂̘b‘èh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 3, 2006.

70.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒXh, ƒŒ[ƒUƒGƒLƒXƒ|uƒŒƒ“ƒYÝŒvE»‘¢“W2006“Á•ÊƒZƒ~ƒi[v, no. S6-2, 2006.

71.    ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢‚̃oƒ“ƒh‰ðÍ‚ÆFDTDŒvŽZh, R-Soft—˜—pŽÒƒZƒ~ƒi[, no. 3, 2006.

72.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Ì‹‘å\‘¢•ªŽU‚Æ‚»‚̉ž—ph, ”÷¬ŒõŠwŒ¤‹†‰ï, pp. 45-50, 2006.

73.    ”nêr•F, X‘å—S, ‹v•Û«ì, ìèrŽj, gƒtƒHƒgƒjƒbƒNŒ‹»’†‚̃Xƒ[ƒ‰ƒCƒgh, “dŽqî•ñ’ÊMŠw‰ï’´‚‘¬ŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 3, 2006.

74.    ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒXh, ŒoÏŽY‹ÆÈuƒtƒHƒgƒjƒbƒNƒlƒbƒgƒ[ƒN‹Zp‚ÌŠJ”­ƒvƒƒWƒFƒNƒgv•ñ‰ï, no. 2, 2006 (Šî’²u‰‰).

75.    ”nêr•F, gƒVƒŠƒRƒ““±”g˜HŒõƒfƒoƒCƒXh, —ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 3, 2007.

76.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï2004ƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, no. 2-1, 2007.

77.    ”nêr•F, gState-of-the-art photonic nanostructure devicesh,uî•ñ’ÊM‹Zp‚ÉŠî‚­–¢—ˆŽÐ‰ïŠî”Õ‘n¶vCOEƒVƒ“ƒ|ƒWƒEƒ€, 2007 (Šî’²u‰‰).

78.    ”nêr•F, gƒVƒŠƒRƒ“”÷¬ŒõŠwƒfƒoƒCƒX‚ƃtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ŠwpU‹»‰ï”––Œ‘æ131ˆÏˆõ‰ïŒ¤‹†‰ï, no. 1, 2007.

79.    ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒX‚Ì¢ŠEh, ‘åã“d‹C’ÊM‘åŠwŠwpƒtƒƒ“ƒeƒBƒAuŠE–ʗ̈æV‹@”\Þ—¿‚ÌŒ¤‹†vƒVƒ“ƒ|ƒWƒEƒ€, no. 1, 2007 (Šî’²u‰‰).

80.    ”nêr•F, gƒVƒŠƒRƒ“”÷¬ƒpƒbƒVƒuƒfƒoƒCƒX‚ÌŠî‘b‚Ɖž—ph, “dŽqî•ñ’ÊMŠw‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 2, 2007.

81.    ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “d‹CŠw‰ï‹@”\«—U“d‘Ì”––Œæ’[‹Zp’²¸ê–åˆÏˆõ‰ï, no. 4, 2007

82.    ”nêr•F, gŒõ‚ƃVƒŠƒRƒ“ƒeƒNƒmƒƒW[ --- ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ«—ˆ“W–]---h, Int. Conf. Solid State Dev. Mat. gEmerging Silicon Technologyh Short Course, 2007

83.    ”nêr•F, gƒzƒgƒjƒbƒNƒNƒŠƒXƒ^ƒ‹iPCj‚̉ž—p—˜—ph, ‰ÈŠw‹ZpU‹»‹@\˜ëáÕƒ[ƒNƒVƒ‡ƒbƒvu‰ÈŠw‹ZpƒV[ƒY‚ðŽY‹Æ‚ɂ‚Ȃ®‚½‚ß‚Ìæ’[Œv‘ªv, no. (3)-3, 2008.

84.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ïƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, 2008.

85.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒgƒfƒoƒCƒX‚Ìi“Wh, “dŽqî•ñ’ÊMŠw‰ïWσfƒoƒCƒX‹ZpŒ¤‹†‰ï, 2008.

86.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹» --- 펯‚ð’´‚¦‚Ä ---h, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[u”÷¬ŒõŠw‚ÌŠî‘b‚Æ”­“Wv, no. 10, 2008.

87.    ”nêr•F, gƒVƒŠƒRƒ“ƒpƒbƒVƒuŒõƒfƒoƒCƒXh, JEITA“dŽqÞ—¿EƒfƒoƒCƒX‹Zpê–åˆÏˆõ‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zp•ª‰È‰ï, no. 1, 2008.

88.    ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ¡Œã‚Ì“WŠJh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒX‰ž—p‹ZpŒ¤‹†‰ïuƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXEƒiƒmƒtƒHƒgƒjƒNƒXv, no. 5, 2008.

89.    ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ƒfƒoƒCƒXŒõƒfƒoƒCƒXh, ‚©‚킳‚« ƒTƒCƒGƒ“ƒX•ƒeƒNƒmƒƒW[ƒtƒH[ƒ‰ƒ€, no. 3, 2008.

90.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚»‚̉ž—ph, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚­•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 2, 2009.

91.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg‹Zp‚Ìi“Wh, “ú–{ŠwpU‹»‰ï‘æ130ˆÏˆõ‰ï, no. 3, 2009.

92.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg‹Zph, “ú–{ŠwpU‹»‰ï‘æ179ˆÏˆõ‰ïŒ¤‹†‰ï, no. 2, 2009.

93.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚­•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 4, 2010.

94.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»óh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒuƒŒ[ƒNƒXƒ‹[‹Zpu‰‰‰ï, no. 2, 2010.

95.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚Æ’´‚Š´“xƒZƒ“ƒVƒ“ƒO‰ž—ph, ‰ÈŠw‹ZpU‹»‹@\ƒ[ƒNƒVƒ‡ƒbƒvu–³‹@”­Œõ‘fŽq‚ð—p‚¢‚½‚‹@”\Æ–¾EŽŸ¢‘ヌ[ƒU‹Zpv, no. 2-2, 2010.

96.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX@`ŒõWÏ‚ÌV“WŠJ`h, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, no. 10, 2010.

97.    ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒXh, ƒTƒCƒGƒ“ƒXƒeƒNƒmƒtƒH[ƒ‰ƒ€, 2010.

98.    ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, ƒVƒŠƒRƒ“Þ—¿‚̉Ȋw‚Æ‹ZpƒtƒH[ƒ‰ƒ€, 2010.

99.    ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚­•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 4, 2010.

100.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»óh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒuƒŒ[ƒNƒXƒ‹[‹Zpu‰‰‰ï, no. 2, 2010.

101.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚Æ’´‚Š´“xƒZƒ“ƒVƒ“ƒO‰ž—ph, ‰ÈŠw‹ZpU‹»‹@\ƒ[ƒNƒVƒ‡ƒbƒvu–³‹@”­Œõ‘fŽq‚ð—p‚¢‚½‚‹@”\Æ–¾EŽŸ¢‘ヌ[ƒU‹Zpv, no. 2-2, 2010

102.  —é–ØŒbŽ¡˜Y, ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒX‚ƃXƒ[ƒ‰ƒCƒgh, “ú–{Šwp‰ï‹cƒVƒ“ƒ|ƒWƒEƒ€uæ’[ƒtƒHƒgƒjƒNƒX‚Ì“W–]v, no. 13, 2010.

103.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX@`ŒõWÏ‚ÌV“WŠJ`h, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, no. 10, 2010.

104.  ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒXh, ƒTƒCƒGƒ“ƒXƒeƒNƒmƒtƒƒ“ƒeƒBƒAƒtƒH[ƒ‰ƒ€, no. 1, 2010.

105.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚Ìi“Wh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 1, 2010

106.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚É‚¨‚¯‚éŒõŠwƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“h, “ú–{ƒA[ƒ‹ƒ\ƒtƒg‰ž—pŽ–—áЉîƒZƒ~ƒi[, no. 6, 2010.

107.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹ZpEƒfƒoƒCƒX‚ÌŠT—vEŠJ”­“®Œü‚Ɖž—p‹y‚Ñ¡Œã‚Ì“WŠJh, “ú–{‹Zpî•ñƒZƒ“ƒ^[ƒZƒ~ƒi[u‹}i“W‚·‚鎟¢‘ãƒCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“‚ÌŠJ”­E‹Zp“®Œü‚Ɖž—pC¡Œã‚Ì“WŠJv, no. 1, 2010

108.  Αq“¿—m, Vì‹G, M•vŽjO, ‹ÊŠÑŠx³, H. C. Nguyen, ‘ì—Á, ’†–ì—T–ç, ”nêr•F, g‘å‹K–ÍWÏ‚ð‰Â”\‚Æ‚·‚éCMOSƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŠJ”­h, ‰ÈŠw‹ZpU‹»‹@\CRESTƒVƒ“ƒ|ƒWƒEƒ€, 2010.

109.  —é–ØŒbŽ¡˜Y, –ΘC«“T, Vì‹G, Ö“¡—I“ñ, ”nêr•F, g‚”ñüŒ`ƒJƒ‹ƒRƒQƒiƒCƒhƒtƒHƒgƒjƒbƒNŒ‹»h, ‰ÈŠw‹ZpU‹»‹@\CRESTƒVƒ“ƒ|ƒWƒEƒ€, 2010.

110.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒNƒX‚Ì‹Zp“®Œü‚Æ¡Œã‚Ì“WŠJh, ŒÃ‰Í“dHu‰‰‰ï, 2010.

111.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚­•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 2, 2011.

112.  ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõWσfƒoƒCƒX‚ÌV“WŠJh, ƒiƒmƒeƒN“Wæ’[ICTƒVƒ“ƒ|ƒWƒEƒ€, no. 1, 2011.

113.  ”nêr•F, gŽ©“]ŽÔ‚Æ“¯‚¶ƒXƒs[ƒh‚Å‘–‚éŒõƒXƒ[ƒ‰ƒCƒg--h, “ú–{•¨—Šw‰ïŒöŠJuÀuŒõ‰ÈŠw‚ÌÅæ’[v, no. 2, 2011.

114.  ”nêr•F (‰¡•l‘—§‘åŠw), gƒtƒHƒgƒjƒbƒN\‘¢‚ÌŒõŠwƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“---Šî‘b‚ÆŽÀÛh “ú–{ƒA[ƒ‹ƒ\ƒtƒg‰ž—pŽ–—áЉîƒZƒ~ƒi[, no. 4, 2011

115.  ”nêr•F, –kãÄ‘¾, ‰H’†“cËŽi, ‘å’ËãÄ‘¾, ˆ¢•”hŽm, ¬¼“¹³, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU---‹†‹É‚̃iƒmƒXƒƒbƒg\‘¢‚Æ‚»‚̉ž—ph, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 26p-BN-8, 2011.

116.  ”nêr•F, gƒiƒm\‘¢ƒtƒHƒgƒjƒNƒXƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, no. C-3-22, 2011i‹L”Ou‰‰j

117.  ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒX‚Ìi“Wh, “dŽqî•ñ’ÊMŠw‰ïWÏŒõƒfƒoƒCƒX‚Ɖž—p‹ZpŒ¤‹†‰ï, no. 2-4, 2012.

118.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚­•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 2, 2012.

119.  ”nêr•F, ƒOƒFƒ“ƒzƒ“C—é–ØŒbŽ¡˜YCÖ“¡—I“ñCΑq“¿—mCVì‹G, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg‚Æ‚»‚̉ž—ph, æ’[Œõ—ÊŽq‰ÈŠwƒAƒ‰ƒCƒAƒ“ƒXƒZƒ~ƒi[, no. 4, 2012.

120.  ”nêr•F, gCMOSƒvƒƒZƒX‚É‚æ‚éƒiƒm\‘¢ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒfƒoƒCƒXh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ï‰ž—p‹ZpŒ¤‹†‰ï, no. 1, 2012.

121.  ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢`Œõ‚𑀂éƒNƒŠƒXƒ^ƒ‹`h, ‘æ48‰ñŽs‘ºŠwpÜŽóÜ‹L”Oæ’[‹Zpu‰‰‰ï, 2012.

122.  ”nêr•F, gƒiƒmƒtƒHƒgƒfƒoƒCƒX‚É‚Þ‚¯‚½ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zph, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2012.

123.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚É‚¨‚¯‚éƒtƒ@ƒEƒ“ƒ_ƒŠƒT[ƒrƒX—˜—p‚̃Cƒƒnh, “dŽqî•ñ’ÊMŠw‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 1, 2013.

124.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚­•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 1, 2013.

125.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚Æ«—ˆ‚ÌŒõƒCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“h, PST-net’è—á‰ïƒVƒ“ƒ|ƒWƒEƒ€, no. 2, 2013.

126.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚é‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ŒÃ‰Í“dH“Á•Êu‰‰‰ï, 2013.

127.  ”nêr•F, gCMOSŒÝŠ·ƒvƒƒZƒX‚ð—p‚¢‚½ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ƃiƒmƒtƒHƒgƒjƒNƒX‚Ìi“Wh, “dŽqî•ñ’ÊMŠw‰ïƒtƒHƒgƒjƒbƒNƒlƒbƒgƒ[ƒNŒ¤‹†‰ï, no. 1, 2013.

128.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zp‚É‚æ‚é’´¬Œ^E‚‘¬Œõ•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ï’´‚‘¬ŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 1, 2013.

129.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒUƒAƒŒƒC‚ƃoƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, “d‹CŠw‰ïƒpƒ[ŒõŒ¹‚Æ‚»‚̉ž—p‹Zp’²¸ê–åˆÏˆõ‰ï, 2013.

130.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚̃oƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, ‰ž—p•¨—Šw‰ï—ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, 2013 .

131.  ”nêr•F, gƒVƒŠƒRƒ“CMOSƒvƒƒZƒX‚ð—p‚¢‚½ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ƒfƒoƒCƒXWÏh, “dŽqî•ñ’ÊMŠw‰ïWÏŒõƒfƒoƒCƒX‚Ɖž—p‹ZpŒ¤‹†‰ï, no. 2, 2014

132.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚­•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 5, 2014.

133.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 3, 2014.

134.  ”nêr•F, "ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ƒfƒoƒCƒX‚Æ‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—p", •l¼ƒzƒgƒjƒNƒX“Á•ÊƒZƒ~ƒi[, 2014.

135.  ”nêr•F, "”÷¬ŒõƒfƒoƒCƒX‚Æ‚Æ‚à‚É`Œ¤‹†Žº20”N", ‘æ7‰ñŠÖ“ŒŒõ‰ÈŠwŽáŽèŒ¤‹†‰ï, no. 4, 2014.

136.  ”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚Æ‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—p", “ú–{ŠwpU‹»‰ï‘æ130ˆÏˆõ‰ï, no. 3, 2014.

137.  ”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»‚ð—p‚¢‚½‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒO‹Zp", JEITAƒwƒ‹ƒXƒPƒAƒfƒoƒCƒX¥ƒVƒXƒeƒ€‹Zp•ª‰È‰ï, no. 1, 2014.

138.  ”nêr•F, "CMOSŒÝŠ·ƒvƒƒZƒX‚É‚æ‚éƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÆŒõWÏ‹Zp‚Ìi“W", –¼ŒÃ‰®‘åŠwVBLƒVƒ“ƒ|ƒWƒEƒ€, no. 2-3, 2014.

139.  ”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»‚̃oƒCƒI‰ž—p", ƒIƒvƒgƒƒjƒNƒXuƒoƒCƒIEˆã—Õª–ì‚ÅŠˆ–ô‚·‚éŒõƒfƒoƒCƒXvƒZƒ~ƒi[, no. MD3-2, 2014

140.  ”nêr•F, g‘å‹K–̓iƒmƒŒ[ƒUƒAƒŒƒC‚ƃoƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, ƒŒ[ƒU[Šw‰ï, no. 11aI-1, 2015.

141.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 1, 2015.

142.  ”nêr•F, ‹ß“¡Œ\—S, gƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg“±”g˜H‚Å‚ÌŒõ—U‹Nƒhƒbƒvƒ‰[ƒVƒtƒgh, ’´‚‘¬ŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 10, 2015.

143.  ”nêr•F, gƒiƒmƒŒ[ƒU‚É‚æ‚éˆã—Ã¥ƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, –k—¢‘åŠwƒoƒCƒIƒtƒHƒgƒjƒNƒXƒZƒ~ƒi[, no. 1, 2015.

144.  ”nêr•F, ‰H’†“cËŽi, “n•”H, ‚‹´‘å’q, ŒÃ“c—TŽ÷, “n粌h‰î, ˆ¢•”hŽm, ŠÝ—mŽŸ, Žð–{^ˆß, –kãÄ‘¾, gGaInAsP”¼“±‘̃fƒoƒCƒX‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒVƒ“ƒO^ƒCƒ[ƒWƒ“ƒOh, “dŽqî•ñ’ÊMŠw‰ïŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï^MŠw‹Z•ñ, no. OME2015-70/OPE2015-136, 2015, pp. 31-16, 2015., 2015.

145.  ”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒgƒfƒoƒCƒXh, “Œ–k‘åŠwE“d‹C’ÊMŒ¤‹†Šu ƒ}ƒ‹ƒ`ƒLƒƒƒŠƒAŒõ”g‚É‚æ‚éæi’ÊMEŒv‘ªƒVƒXƒeƒ€‚ÉŠÖ‚·‚錤‹†vŒ¤‹†‰ï, 2015.

146.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒX‚Ì’ÊM^ˆã—Éž—ph, “dŽqî•ñ’ÊMŠw‰ïŒõ’ÊMƒVƒXƒeƒ€Œ¤‹†‰ï, 2015.

147.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 3, 2016.

148.  ”nêr•F, gƒiƒmƒŒ[ƒUƒoƒCƒIƒZƒ“ƒTh, “dŽqî•ñ’ÊMŠw‰ïŒõWσfƒoƒCƒXŒ¤‹†‰ï, 2016 .

149.  ”nêr•F, gƒiƒmƒtƒHƒgƒjƒNƒXh, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, no. 2-1, 2016.

150.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒTh, æ’[Œõ—ÊŽq‰ÈŠwƒAƒ‰ƒCƒAƒ“ƒXƒZƒ~ƒi[iŒõ‰ÈŠwŠÖ˜A‚ÌÞ—¿EƒfƒoƒCƒXj, no. 2, 2016.

151.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚̃oƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, ‰ž—p•¨—Šw‰ï”÷¬ŒõŠwŒ¤‹†‰ï, no. 1, 2016.

152.  ”nêr•F, g”¼“±‘Ì”­Œõ‘fŽq‚É‚æ‚é‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, •ªÍ‰ÈŠw‰ï“¢˜_‰ï, no. B2011, 2016.

153.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚éƒoƒCƒIƒZƒ“ƒT[h, “ú–{^‹óŠw‰ïE“ú–{•\–ʉȊw‰ï‡“¯Œ¤‹†‰ï, no. 5, 2017.

154.  ”nêr•F, gGaInAsP”¼“±‘Ì”­ŒõƒfƒoƒCƒX‚É‚æ‚éƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, “d‹CŠw‰ïƒGƒŒƒNƒgƒƒoƒCƒIƒƒW[’²¸ê–åˆÏˆõ‰ï, no. 1, 2017.

155.  ”nêr•F, gŒõ–³ü‹‹“d‚É‚æ‚éƒiƒmƒŒ[ƒU[‚ƃoƒCƒIƒZƒ“ƒT‰ž—ph, ‰ž—p•¨—Šw‰ï”÷¬ŒõŠwŒ¤‹†‰ï, no. 9, 2017.

156.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zp‚ð—p‚¢‚½ƒXƒ[ƒ‰ƒCƒgLiDAR‚ÌŒŸ“¢h, “ú–{ŠwpU‹»‰ï‘æ130ˆÏˆõ‰ï, 2017.

157.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 4, 2018.

158.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«Œ¤‹†‰ï, 2018.

159.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg\‘¢‘Ì‚ð—˜—p‚µ‚½”ñ‹@ŠBŽ®ƒnƒCƒŒƒ]ŒõƒŒ[ƒ_[‚ÌŠJ”­h, ƒIƒvƒgƒƒjƒNƒXƒZƒ~ƒi[, no. 5, 2018.

160.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg\‘¢‚ð—p‚¢‚½ŒõƒŒ[ƒ_[h, “dŽqî•ñ’ÊMŠw‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 8, 2018.

161.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒXƒ[ƒ‰ƒCƒgLiDARŠJ”­h, ŠÖ¼“dŽqH‹ÆU‹»ƒZƒ“ƒ^[ƒZƒ~ƒi[, no. 2, 2018.

162.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg‹Zp‚ð—p‚¢‚½¬Œ^LiDAR‚ÌŠJ”­‚Æ‘ª‹—‹Zph, ‹Zpî•ñ‹¦‰ïuŽÔÚƒZƒ“ƒT\vuK‰ï, 2018. 

163.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg`’x‚¢Œõ‚Å“¾‚ç‚ê‚é‹ZpŠvV`‚¸×3ŽŸŒ³‹óŠÔ”FŽ¯‚ւ̉ž—ph, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 1, 2019.

164.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 4, 2019.

165.  —‘q—z‰î, VˆäG”V, ”nêr•F, g¬Œ^SiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg•Ï’²Ší‚Ì64 Gbps“®ìh, “dŽqî•ñ’ÊMŠw‰ïƒŒ[ƒUE—ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, 2019.

166.  ”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg•ÎŒüŠí‚ÆLiDARŠJ”­h, ‰ž—p•¨—Šw‰ïŒõ”gƒZƒ“ƒVƒ“ƒO‹ZpŒ¤‹†‰ï, 2019.

167.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXLiDAR‚ÌŠJ”­h, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2019.

168.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒg`’x‚¢Œõ‚Å“¾‚ç‚ê‚é‹ZpŠvV`‚¸×3ŽŸŒ³‹óŠÔ”FŽ¯‚ւ̉ž—ph, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 1, 2019.

169.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 4, 2019.

170.  —‘q—z‰î, VˆäG”V, ”nêr•F, g¬Œ^SiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg•Ï’²Ší‚Ì64 Gbps“®ìh, “dŽqî•ñ’ÊMŠw‰ïƒŒ[ƒUE—ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, 2019.

171.  ”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg•ÎŒüŠí‚ÆLiDARŠJ”­h, ‰ž—p•¨—Šw‰ïŒõ”gƒZƒ“ƒVƒ“ƒO‹ZpŒ¤‹†‰ï, 2019.

172.  ”nêr•F, gƒ\ƒŠƒbƒhƒXƒe[ƒgLiDAR‚ÌŠJ”­h, S&To”ÅLiDAR‚ÌŒ»Ý‚Æ“W–]ƒZƒ~ƒi[, 2019.

173.  ”nêr•F, ˆ¢•”hŽm, ‘q‹´—È, ˆÉ“¡Š°”V, ‹ÊŠÑŠx³, gƒXƒ[ƒ‰ƒCƒg“±”g˜H‚É‚æ‚é”ñ‹@ŠBŽ®ƒr[ƒ€ƒXƒeƒAƒŠƒ“ƒO‚ÆLiDAR‰ž—ph, “dŽqî•ñ’ÊMŠw‰ïPICS/OPE/LQEŒ¤‹†‰ï, 2019.

174.  ”nêr•F, g¢ŠE‚̃‰ƒCƒ_[“®Œü‚ƃXƒ[ƒ‰ƒCƒgƒ‰ƒCƒ_[‚ÌŠJ”­h, ‰ÈŠw‹ZpU‹»‹@\ƒ[ƒNƒVƒ‡ƒbƒvuŒõ‹Zp‚̘ëáÕv, 2019.

175.  ”nêr•F, g‚Í‚¶‚ß‚Éh, ƒŒ[ƒU[Šw‰ï”NŽŸ‘å‰ï, 2020 (µ‘Òu‰‰).

176.  ”nêr•F, gSiƒtƒHƒgƒjƒNƒX‚ð—p‚¢‚½ƒXƒ[ƒ‰ƒCƒgLiDARh, ƒCƒ“ƒ^[ƒIƒvƒgOITDƒZƒ~ƒi[uŽ©“®‰^“]‚ÉŒü‚¯‚½Œõ‹Zpv, 2020.

177.  ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, 2020.

178.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXLiDAR‚ÌŠJ”­h, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«•ª‰È‰ïŒ¤‹†‰ï, 2020.

179.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ð—p‚¢‚½ƒ\ƒŠƒbƒhƒXƒe[ƒgƒ‰ƒCƒ_[‚Ö‚Ì’§íh, ƒŒ[ƒUƒZƒ“ƒVƒ“ƒOƒVƒ“ƒ|ƒWƒEƒ€, 2020.

180.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒXƒ[ƒ‰ƒCLiDAR‚ÌŠJ”­h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïŽ©“®ŽÔEƒ‚ƒrƒŠƒeƒBƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 1, 2020.

181.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÆLiDAR‰ž—ph, ‘åã‰ÈŠw‹ZpƒZƒ“ƒ^[ƒtƒHƒgƒjƒNƒX‹ZpƒtƒH[ƒ‰ƒ€‚ÌŒ¤‹†‰ï, 2020.

182.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚Ìi“Wh, ƒGƒŒƒNƒgƒƒjƒNƒXŽÀ‘•Šw‰ïŒõ‰ñ˜HŽÀ‘•‹ZpŒ¤‹†‰ï, no. 1, 2021.

183.  ”nêr•F, gŽ©“®‰^“]Cƒƒ{ƒbƒg“™‚ւ̉ž—p‚ð–ÚŽw‚·ƒZƒ“ƒT`ØŽèƒTƒCƒYLiDAR‚ÌŽÀŒ»‚ÉŒü‚¯‚Ä`h, ‚Æ‚¿‚¬ŒõŽY‹ÆU‹»‹¦‹c‰ïu‰‰‰ï, 2021.

184.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ƃXƒ[ƒ‰ƒCƒg‚ð—˜—p‚µ‚½FMCW LiDARŠJ”­h, “ú–{ŒõŠw‰ïHŠwÝŒvƒOƒ‹[ƒvŒ¤‹†‰ï, 2021

185.  ”nêr•F, gLiDAR‚Ì‹Zp“®Œü‚ƃIƒ“ƒ`ƒbƒvLiDAR‚ÌŠJ”­h, Œõ’ÊM‹Zp“WiFOEjê–å‹ZpƒZƒ~ƒi, 2021.

186.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXSolid-State LiDARŠJ”­h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, 2021.

187.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒIƒ“ƒ`ƒbƒvFMCW LiDAR‚Ö‚Ì’§íh, ‰f‘œî•ñƒƒfƒBƒAŠw‰ïî•ñƒZƒ“ƒVƒ“ƒOŒ¤‹†‰ï, 2021.

188.  ”nêr•F, gƒXƒ[ƒ‰ƒCƒgLiDARh, ŽŸ¢‘ã‰æ‘œ“ü—̓rƒWƒ‡ƒ“ƒVƒXƒeƒ€•”‰ï, 2022.

189.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÆLiDAR‚ÌÅV“®Œüh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒ}ƒ“ƒXƒŠ[ƒZƒ~ƒi[, 2022.

190.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éŒõWÏ‹Zp‚ÆLiDAR‰ž—ph, ŠwUŽYŠw‹¦—͈ψõ‰ïR025æi”––ŒŠE–Ê‹@”\‘n¬ˆÏˆõ‰ï, 2022.

191.  T. Baba, gFMCW LiDAR incorporating slow light beam scannersh, Science Salon, 2022.

192.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒõWÏŒ^FMCW LiDAR‚ÌŠJ”­h, ƒIƒvƒgƒƒjƒNƒXŒõ‚ƃŒ[ƒU[‚̉Ȋw‹ZpƒtƒFƒAƒZƒ~ƒi[, no. 4, 2023.

193.  ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒõWσvƒ‰ƒbƒgƒtƒH[ƒ€‚ÆLiDAR‰ž—ph, ƒGƒŒƒNƒgƒƒjƒNƒXŽÀ‘•Šw‰ïi‚i‚h‚d‚oj“dŽq•”•iEŽÀ‘•‹ZpˆÏˆõ‰ïu‰‰‰ï, no. 4, 2023.

194.  ”nêr•F, gƒCƒ“ƒtƒHƒ}ƒeƒBƒNƒX‹Zp‚É‚æ‚éƒtƒHƒgƒjƒNƒXƒfƒoƒCƒX‚ÌÅ“K‰»h, i‰»ŒvŽZƒVƒ“ƒ|ƒWƒEƒ€, 2023.

“Á‹–

1.     š •ª‘×—Y, ”nêr•F, årl, ˆÉ‰êŒ’ˆê, gÏ‘wŒõ“±”g˜Hh, “Á‹–1828299.

2.     š •ª‘×—Y, ”nêr•F, ˆÉ‰êŒ’ˆê, gŒõ•ª”gŽóŒõWωñ˜Hh, “Á‹–1828303.

3.     ”nêr•F, š •ª‘×—Y, •Ä—ÇN•F, gƒXƒgƒ‰ƒCƒvŒõ‰¡•Â‚¶ž‚ß–@h, “Á‹–2879849.

4.     ”nêr•F, š •ª‘×—Y, gŒõ“±”g˜Hh, “Á‹–2728421.

5.     š •ª‘×—Y, “c‘ºCˆê, ”nêr•F, gƒoƒCƒAƒXƒXƒpƒbƒ^h, “Á‹–2787956.

6.     ˆÉ‰êŒ’ˆê, ”nêr•F, ²X–ØÊŽq, g–³’²®ŒõƒRƒlƒNƒ^h, “Á‹–2615400i1997”N3ŒŽ11“új.

7.     T. Baba and T. Tani, gOptical elementh, US Patent no: US 6522448 B2, Feb. 18, 2003.

8.     T. Baba, A. Matsuzono, A. Furukawa, S. Sasaki and M. Hoshi, gSurface emitting semiconductor laser and method for manufacturing thereof as well as optical deviceh, US Patent, no. 10/977,197, 2004.

9.     ”nêr•F, g”÷¬Œõ‰ñ˜H‘•’uh, “Á‹–3737595i2005”N11ŒŽ4“új.

10.  T. Baba and D. Mori, gOptical control elementh, US Patent, no. 7,123,804, Oct. 17, 2006.

11.  ”nêr•F, ’J•°, gŒõ‘fŽqh, “Á‹–3923244i2007”N3ŒŽ2“új.

12.  T. Sakai, I. Katoh and T. Baba, Optical Control Deviceh, US Patent No. 7,369,734, May 6, 2008.

13.  ”nêr•F, ’J•°, gŒõ•ÎŒü‘fŽqh, “Á‹–4128382i2008”N5ŒŽ23“új.

14.  âˆä“Ä, ‰Á“¡Šô—Y, ‘DŒËL‹`, ”nêr•F, gŒõ’x‰„‘fŽqh, “Á‹–4208754i2008”N10ŒŽ31“új.

15.  âˆä“Ä, ‰Á“¡Šô—Y, ”nêr•F, gŒõ§Œä‘fŽqh, “Á‹–4278597(2009”N3ŒŽ19“ú)@.

16.  âˆä“Ä, ‰Á“¡Šô—Y, ”nêr•F, X‘å—S, gŒõ§Œä‘fŽqh, “Á‹–4327064i2009”N6ŒŽ19“új.

17.  ‰¡“à‘¥”V, Šì£’q•¶, ”nêr•F, g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»“±”g˜H\‘¢‹y‚Ñ‚»‚ê‚ðŽg—p‚µ‚½”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒXh, “Á‹–4349489i2009”N7ŒŽ31“új.

18.  âˆä“Ä, ‰Á“¡Šô—Y, ‘DŒËL‹`, ”nêr•F, gŒõ§Œä‘fŽqh, “Á‹–4372588i2009”N9ŒŽ11“új

19.  ”nêr•F, ‰Á“¡Šô—Y, âˆä“Ä, ‘DŒËL‹`, gŒõ§Œä‘fŽqh, “Á‹–4372589i2009”N9ŒŽ11“új.

20.  ”nêr•F, ‰Á“¡Šô—Y, âˆä“Ä, ‘DŒËL‹`, gŒõ§Œä‘fŽqh, “Á‹–4381859i2009”N10ŒŽ2“új.

21.  ”nêr•F, X‘å—S, gŒõ§Œä‘fŽqh, “Á‹–4398275i2009”N10ŒŽ30“új.

22.  âˆä“Ä, ‰Á“¡Šô—Y, ‘DŒËL‹`, ”nêr•F, gŒõ§Œä‘fŽqh, “Á‹–4426353i2009”N12ŒŽ18“új

23.  T. Baba, A. Matsuzono, A. Furukawa, S. Sasaki and M. Hoshi, gMethod for manufacturing surface-emitting semiconductor laserh, US Patent, no. 7,678,598 B2, March 16, 2010.

24.  ”nêr•F, Šì£’q•¶, gŒõŠw‘fŽqCŒõŠw‘fŽq‚Ö‚ÌŒõ‚Ì“üŽË•û–@C‹y‚ÑCƒX[ƒp[ƒvƒŠƒYƒ€h, “Á‹–4535373i2010”N6ŒŽ25“új.

25.  K. Kiyota and T. Baba, gPhotonic crystal deviceh, US Patent, no. 7,831,124, Nov. 9, 2010.

26.  ”nêr•FC¼‰€~ŽjCŒÃ‰Íº•vC²X–Ø’qC¯Œõ¬Ch–Ê”­Œõ”¼“±‘̃Œ[ƒU‹y‚ÑŒõŠw‘•’uh, Chinese Patent, no. ZL200410100546.0, Nov. 24, 2010.

27.  ŒÃ캕v,”nêr•F, ¼‰€~Žj,²X–Ø’q, ¯Œõ¬, g–Ê”­Œõ”¼“±‘̃Œ[ƒU‚Æ‚»‚Ì»‘¢•û–@‹y‚ÑŒõŠw‘•’uh, “Á‹–4641736i2010”N12ŒŽ10“új.

28.  ”nêr•F, –ì茪Œå, –kãÄ‘¾, g‹üÜ—¦ƒZƒ“ƒT‚¨‚æ‚Ñ‹üÜ—¦‘ª’è‘•’uh, “Á‹–‘æ4867011†i2011”N11ŒŽ25“új.

29.  âˆä“Ä, ”nêr•F, gŒõ§Œä‘fŽqh, “Á‹–‘æ4971045†i2012”N4ŒŽ13“új@

30.  T. Baba, A. Matsuzono, A. Furukawa, S. Sasaki and M. Hoshi, gSurface emitting semiconductor laser and method for manufacturing thereof as well as optical deviceh, Korean Patent, no. 10-1180377, Aug. 31, 2012.

31.  ”nêr•F, “nç²G‹P, ‰¡ŽRŒ\—C, g”¼“±‘̃Œ[ƒUh, “Á‹–‘æ5152721†i2012”N12ŒŽ14“újD

32.  ”nêr•F, •—ŠÔ‘ñ–ç, g”¼“±‘Ì”­ŒõƒfƒoƒCƒXh, “Á‹–5186093i2013”N1ŒŽ25“új.

33.  T. Baba, A. Matsuzono, A. Furukawa, S. Sasaki and M. Hoshi, gSurface emitting semiconductor laser and method for manufacturing thereof as well as optical deviceh, European Patent No. 1528647, Sept. 26, 2013.

34.  ”nêr•F, Αq“¿—m, ˆÉ“¡Š°”V, "‘½ƒ‚[ƒhŠ±ÂŒõƒJƒvƒ‰", “Á‹–‘æ5979653†i2016”N8ŒŽ5“új

35.  ”nêr•F, Αq“¿—m, ‘ì—Á, gŒõ‘ŠŠÖŒvh, “Á‹–‘æ6041264†i2016”N11ŒŽ18“új

36.  ”nêr•F, ‹ß“¡Œ\—S, gŒõ‘ŠŠÖŠíh, “Á‹–‘æ6585410†i2019”N9ŒŽ13“új

37.  ”nêr•F, ‹ß“¡Œ\—SAˆ¢•”hŽm, gŒõŽóMŠíƒAƒŒƒCA‹y‚у‰ƒCƒ_[‘•’uh, ’†‘“Á‹–ZL201880034741.8i2020”N11ŒŽ3“új

38.  ”nêr•F, ¬ŽR“ñŽO•v, gŒõ•ÎŒüƒfƒoƒCƒX‚¨‚æ‚у‰ƒCƒ_[‘•’uh,“Á‹–‘æ6879561†i2021”N5ŒŽ7“új

39.  T. Baba, F. Koyama, gOptical deflection device and LiDAR apparatush, ƒhƒCƒc“Á‹–60 2017 033 828.1i2021”N5ŒŽ7“új

40.  ”nêr•F, ’|“à–G], gŒõ•ÎŒüƒfƒoƒCƒXh, “Á‹–‘æ6883828†i2021”N5ŒŽ13“újD

41.  T. Baba, F. Koyama, gOptical deflection device and LiDAR apparatush, US Patent 11,079,541i2021”N8ŒŽ3“új

42.  ”nêr•F, ’|“à–G], ’|“àŒæ˜N, gŒõ•ÎŒüƒfƒoƒCƒXA‹y‚у‰ƒCƒ_[‘•’uh, “Á‹–‘æ6931237†i2021”N8ŒŽ17“új.

43.  ”nêr•F, ˆ¢•”hŽm, ˆÉ“¡Š°”V, gŒõ•ÎŒüƒfƒoƒCƒXC‹y‚у‰ƒCƒ_[‘•’uh, “Á‹–‘æ6942333†i2021”N9ŒŽ10“új.

44.  ”nêr•F, ’|“à–G], ˆÉ“¡Š°”V, gŒõ•ÎŒüƒfƒoƒCƒXh, “Á‹–‘æ6945816†i2021”N9ŒŽ17“új.

45.  ”nêr•F, ¼ŽRL•F, gŒõ•ÎŒüƒfƒoƒCƒX‚¨‚æ‚у‰ƒCƒ_[‘•’uh, “Á‹–‘æ6956964†i2021”N10ŒŽ8“új.

46.  ”nêr•F, ¬ŽR“ñŽO•v, gŒõ•ÎŒüƒfƒoƒCƒX‚¨‚æ‚у‰ƒCƒ_[‘•’uh, ’†‘‘‰Æ’mŽ¯ŽYŒ ‹Ç2018083100503980 (2021”N10ŒŽ22“ú)

47.  ”nêr•F, ‹ß“¡Œ\—S, ˆ¢•”hŽm, gŒõŽóMŠíƒAƒŒƒCC‹y‚у‰ƒCƒ_[‘•’uh, “Á‹–‘æ7076822†i2022”N5ŒŽ20“új

48.  ”nêr•F, ’|“à–G], ˆÉ“¡Š°”V, “í˜Ð^, gŒõ•ÎŒüƒfƒoƒCƒXh, ’†‘“Á‹–no. ZL201880062107.5i2022”N7ŒŽ5“új

49.  ”nêr•F, ’|“àŒæ˜N, ’|“à–G], Ž›“c—z—S, gŒõ•ÎŒüƒfƒoƒCƒXh, “Á‹–‘æ7134441†i2022”N9ŒŽ2“új.

50.  ”nêr•F, ’|“à–G], ˆÉ“¡Š°”V, “í˜Ð^, gŒõ•ÎŒüƒfƒoƒCƒXh, “Á‹–‘æ7134443†i2022”N9ŒŽ2“új

51.  T. Baba and N. Nishiyama, gOptical deflection device and LiDAR apparatush, US Patent no. 11,448,729 Filed on Sept. 20, 2022.

52.  T. Baba, K. Kondo, H. Abe, gOptical receiver array and LiDAR apparatush, US Patent no. 11,486,979 Filed on Nov. 1, 2022.

ŽóÜ

1.     ’O‰H‹L”OÜ, ˜_•¶ gMonolithic integration of ARROW-type demultiplexer and photodetector in shorter wavelength regionh, IEEE/OSA J. Lightwave Technol., vol. LT-8, no. 1, pp. 99-104, 1990, ‚»‚Ì‘¼‚Ì‹Æтɑ΂µ‚Ä, “Œ‹ž, 1991”N2ŒŽ28“ú.

2.     Best Paper Award of Microoptics Conf./Topical Meeting of Gradient Index Optical Systems '93, gRoom temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laserh, Kawasaki, October 22, 1993.

3.     “dŽqî•ñ’ÊMŠw‰ïŠwp§—ãÜ, t‹G“dŽqî•ñ’ÊMŠw‰ï‘S‘‘å‰ï, u‰‰‘è–Úh1.3mm‘Ñ•½’R‰~Œ`–„‚ßž‚Ý\‘¢–Ê”­ŒõƒŒ|ƒU‚̒Ⴕ‚«‚¢’lŽº‰·ƒpƒ‹ƒX”­U‚ƘA‘±“®ì‰·“x‚ÌŒüãh, no. C-154, 1993C‚ɑ΂µ‚ÄC“Œ‹žC1994”N3ŒŽ27“ú.

4.     “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ü, gFirst room temperature cw operation of GaInAsP/InP surface emitting laserh, IEICE Trans. Electron., vol. E76-C, no. 9, pp. 1423-1424, 1993. ‚ɑ΂µ‚Ä, “Œ‹ž, 1994”N5ŒŽ14“ú.

5.     Best Paper Award of Microoptics Conf. e99, gFirst successful fabrication and evaluation of 2-dimensional photonic crystal waveguides with bendsh, Makuhari, July 16, 1999.

6.     ŠÛ•¶Œ¤‹†§—ãÜ, ƒ}ƒCƒNƒ\‘¢ŒõƒfƒoƒCƒX‚ðŠî–{‚Æ‚·‚éƒtƒHƒgƒjƒbƒNWÏŽè–@‚ÌŠJ‘ñ, “Œ‹ž, 2000”N3ŒŽ9“ú.

7.     IEICE International Distinguished Lecture Award at Taiwan Chapter, gPhotonic crystals and high index contrast structuresh, Taipei, December 25, 2004

8.     “ú–{ŠwpU‹»‰ïÜ, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ðŠî”Õ‚Æ‚·‚éƒiƒm\‘¢ŒõƒGƒŒƒNƒgƒƒjƒNƒXh, “Œ‹ž, 2006”N3ŒŽ9“ú.

9.     “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ü, gSi×ü“±”g˜Hh, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J88-C, no. 6, pp. 363-373, 2005 ‚ɑ΂µ‚Ä, “Œ‹ž, 2006”N5ŒŽ27“ú

10.  ‰¡•l‘—§‘åŠw”­–¾Šw’·Ü, gŒõ”gƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“ƒvƒƒOƒ‰ƒ€‚Ì‘nì‚Æ‚±‚ê‚ð—p‚¢‚½ŒõƒfƒoƒCƒX‚Ì‹ZpˆÚ“]h, ‰¡•l, 2007”N4ŒŽ20“ú

11.  IEEE/LEOS Distinguished Lecture Award, gState-of-the-art photonic nanostructure devicesh, Florida, October 22, 2007.

12.  “dŽqî•ñ’ÊMŠw‰ïƒGƒŒƒNƒgƒƒjƒNƒXƒ\ƒTƒCƒGƒeƒBÜ, 2011”N9ŒŽ14“ú

13.  ”÷¬ŒõŠw‘Û‰ïMOC2011Å—DG˜_•¶Ü, 2011”N11ŒŽ2“ú

14.  Žs‘ºŠwpÜiŒ÷ÑÜj, 2012”N4ŒŽ27“ú

15.  IEEEŽl‘°”¼“±‘Ì‘Û‰ï‹cÅ—DGƒ|ƒXƒgƒfƒbƒhƒ‰ƒCƒ“˜_•¶Ü, 2012”N8ŒŽ31“ú

16.  ‰ž—p•¨—Šw‰ïƒ|ƒXƒ^[Ü, 2013”N3ŒŽ29“ú

17.  Best Paper Award for Conference on Laser and Electro-Optics Pacific Rim, 2013”N7ŒŽ3“ú

18.  ‰ž—p•¨—Šw‰ïƒ|ƒXƒ^[ÜC2016”N3ŒŽ20“ú

19.  •¶•”‰ÈŠw‘åb•\²‰ÈŠw‹ZpÜC2016”N4ŒŽ20“ú

20.  “dŽqî•ñ’ÊMŠw‰ïƒGƒŒƒNƒgƒƒjƒNƒXƒ\ƒTƒCƒGƒeƒBµ‘Ò˜_•¶Ü, 2018”N9ŒŽ12“ú

21.  •Ä‘ŒõŠw‰ïOPTICAƒtƒFƒ[, 2022”N1ŒŽ1“ú

22.  •Ä‘“d‹C“dŽqŠw‰ïIEEEƒtƒFƒ[, 2022”N1ŒŽ1“ú

23.  ‰ž—p•¨—Šw‰ïƒtƒFƒ[, 2022”N9ŒŽ20“ú

24.  Ž‡Žø–JÍ, 2024”N4ŒŽ29“ú


babalabs.gifƒgƒbƒvƒƒjƒ…[