Œ¤‹†‹ÆÑ
Še˜_•¶‚Ìpdfƒtƒ@ƒCƒ‹‚ÍCŠeŠw‰ï‚̃|ƒŠƒV[‚É]‚Á‚ÄŒfÚ‚µ‚Ä‚¢‚Ü‚·DÔ‚Ì( )‚Í2019”N‚ÌCitation index (Google
Scholar), ‘‡Œv‚Í–ñ13100Œ)‚Å‚·D
ŠwpŽGŽ˜_•¶
1. Y. Kokubun, T. Baba and K. Iga, gSilicon optical printed circuit
board for three-dimensional integrated opticsh, Electron. Lett., vol. 21, no.
11, pp. 508-509, 1985. (21)
2. Y. Kokubun,
T. Baba, T. Sakaki and K. Iga, gLow loss antiresonant
reflecting optical waveguide on Si substrate in visible-wavelength regionh,
Electron. Lett., vol. 22, no. 22, pp. 892-893, 1986. (69)
3.
T. Baba, Y. Kokubun, T. Sakaki and K. Iga, gLoss reduction
of an ARROW waveguide in shorter wavelength and its stack configurationh, J.
Lightwave Technol., vol. LT-6, no. 9, pp. 1440-1445, 1988. (123)
4. T. Baba and
Y. Kokubun, gNew polarization-insensitive antiresonant
reflecting optical waveguide (ARROW-B)h, IEEE Photon. Technol. Lett., vol. 1,
no. 8, pp. 232-234, 1989. (55)
5.
T. Baba, Y. Kokubun and H. Watanabe, gMonolithic integration of
ARROW-type demultiplexer and photodetector in shorter wavelength regionh, J.
Lightwave Technol., vol. LT-8, no. 1, pp. 99-104, 1990. (59)
6. T. Baba, S. Tamura, Y. Kokubun and S. Watanabe, gMonolithic
integration of multilayer filter on vertical surface of semiconductor substrate
by a bias-sputtering techniqueh, IEEE Photon. Technol. Lett., vol. 2, no. 3,
pp. 191-193, 1990. (12)
7.
T. Baba and
Y. Kokubun, gHigh efficiency light coupling from antiresonant
reflecting optical waveguide to integrated photodetector using anti-reflecting
layerh, Appl. Opt., vol. 29, no. 18, pp. 2781-2792, 1990. (46)
8.
T. Baba and
Y. Kokubun, gScattering loss of antiresonant
reflecting optical waveguidesh, J. Lightwave Technol., vol. 9, no. 5, pp.
590-597, 1991. (10)
9.
T. Baba, T. Hamano, F. Koyama and K. Iga, gSpontaneous
emission factor of a microcavity DBR surface emitting laserh, IEEE J. Quantum
Electron., vol. 27, no. 6, pp. 1347-1358, 1991. (330,
“¯Ž—ð‘ã90ˆÊ)
10. M. Shimizu, T. Mukaihara, T. Baba and K.
Iga, gA method of polarization stabilization in surface emitting lasersh, Jpn. J. Appl. Phys., vol. 30, no. 6A, pp. L1015-L1017,
1991. (16)
11.
T. Baba, T. Hamano, F. Koyama and K. Iga, gSpontaneous emission
factor of a microcavity DBR surface emitting laser (II) --- effect of electron quantum confinements ---h, IEEE J. Quantum Electron., vol. 28,
no. 5, pp. 1310-1319, 1992. (62)
12.
A. Sasaki, T.
Baba and K. Iga, gFocusing characteristics of convex-shaped distributed-index
microlensh, Jpn. J. Appl. Phys., vol. 31, no. 5B, pp.
1611-1617, 1992. (8)
13.
K. Murashige,
A. Akiba, T. Baba and K. Iga, gParallel optical Walsh expansion in a pattern
recognition preprocessor using planar microlens arrayh, Jpn.
J. Appl. Phys., vol. 31, no. 5B, pp. 1666-1671, 1992.
(4)
14.
T. Baba and Y. Kokubun, gDispersion and radiation loss
characteristics of antiresonant reflecting optical
waveguides --- numerical analysis and
approximate expressions ---h, IEEE J.
Quantum Electron., vol. 28, no. 7, pp. 1689-1700, 1992. (160)
15.
S. Tamura, T.
Baba and Y. Kokubun, gSelective formation of dielectric film on vertical
surface for photonic integrated circuitsh, IEEE J. Quantum Electron., vol. 28,
no. 7, pp. 1727-1731, 1992. (3)
16. A. Sasaki, T. Baba and K. Iga, gPut-in micro-connectors for
alignment-free coupling of optical fiber arraysh, IEEE Photon. Technol. Lett.,
vol. 4, no. 8, pp. 908-911, 1992. (32)
17.
D. Intani, T. Baba and K. Iga, gPlanar microlens relay optics
utilizing lateral focusingh, Appl. Opt., vol. 31, no. 25, pp. 5255-5258, 1992. (10)
18. T. Baba, K. Suzuki, Y. Yogo, K. Iga and F. Koyama, gThreshold
reduction of GaInAsP/InP circular buried heterostructure surface emitting laser
by a single step PBH regrowthh, Electron. Lett., vol. 29, no. 4, pp. 331-332,
1993. (13)
19. T. Baba, K. Matsuoka, F. Koyama and K. Iga, gA low threshold 1.3 mm GaInAsP/InP flat-surface circular buried heterostructure surface
emitting laserh, Jpn. J. Appl. Phys., vol. 32, no.
3A, pp. 1126-1127, 1993. (7)
20. T.
Baba, Y. Yogo, K. Suzuki, F. Koyama and K. Iga, gNear room temperature
continuous wave lasing characteristics of GaInAsP/InP surface emitting laserh,
Electron. Lett., vol. 29, no. 9, pp. 913-914, 1993. (176)
21. T. Baba, Y. Yogo, K. Suzuki, K. Iga and F. Koyama, gGaInAsP/InP
low-mesa CPBH surface emitting laser with an optimally deposited MgO/Si
multilayer laser mirrorh, Jpn. J. Appl. Phys., vol.
32, no. 6A, pp. 2692-2694, 1993. (1)
22. T. Baba, K. Suzuki, Y. Yogo, K. Iga and F. Koyama, gLow threshold
room temperature pulsed and ‒57ºC cw operations of 1.3 mm GaInAsP/InP
circular planar buried heterostructure surface emitting lasersh, IEEE Photon.
Technol. Lett., vol. 5, no. 7, pp. 744-746, 1993. (5)
23. S. Asakawa, Y. Kokubun, M. Ohyama and T. Baba, gThree-dimensional
optical inter-connects by stacked ARROW waveguidesh, Electron. Lett., vol. 29,
no. 16, pp. 1485-1486, 1993. (24)
24.
²X–ØÊŽqC”nêr•FCˆÉ‰êŒ’ˆê, gƒvƒbƒ`ƒ“ƒ}ƒCƒNƒƒRƒlƒNƒ^‚É‚æ‚鎩“±ŒõŒ‹‡–@h, ŒõŠw, vol. 22, no. 8, pp. 477-481, 1993.
25. T. Baba, Y. Yogo, K. Suzuki, F. Koyama and K. Iga, gFirst room
temperature cw operation of GaInAsP/InP surface
emitting laserh, IEICE Trans. Electron., vol. E76-C, no. 9, pp. 1423-1424,
1993. (24)
26.
”nêr•FC—]‹½K–¾C—é–ØŽ¹C¬ŽR“ñŽO•vCˆÉ‰êŒ’ˆê, g’Ⴕ‚«‚¢’l1.3mm‘Ñ•½’R‰~Œ`–„‚ßž‚Ý\‘¢–Ê”ŒõƒŒ[ƒUh, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J76-C, no. 10,
pp. 367-374, 1993.
27. T. Mukaihara, N. Ohnoki,
T. Baba, F. Koyama and K. Iga, gA novel birefringent distributed Bragg
reflector using a metal/dielectric polarizer for polarization control of
surface-emitting lasersh, Jpn. J. Appl. Phys., vol.
33, no. 2B, pp. L227-L229, 1994. (40)
28.
T. Baba, Y.
Yogo, K. Suzuki, F. Koyama and K. Iga, gContinuous wave GaInAsP/InP surface
emitting laser with a thermally conductive MgO/Si multilayer mirrorh, Jpn. J. Appl. Phys., vol. 33, no. 4A, pp. 1905-1909, 1994. (18)
29.
D. Intani, T. Baba and K. Iga, gSimple optical
wavelength-division multiplexer component that uses the lateral focusing scheme
of a planar microlensh, Appl. Opt., vol. 33, no. 16, pp. 3405-3408, 1994. (5)
30.
•l–ì“NŽqC”nêr•FCˆÉ‰êŒ’ˆê, g‹É”÷‹¤UŠí’†–Ê”ŒõƒŒ[ƒU‚É‚¨‚¯‚é‹«ŠEðŒ‚̈Ⴂ‚É‚æ‚鎩‘R•úo‚ÆŒõo—͂̕ω»h, “dŽqî•ñ’ÊMŠw‰ï˜_•¶ŽCvol. J78-C-I, no. 2, pp.
80-87, 1995. (1)
31.
T. Baba and
M. Koma, gPossibility of InP-based 2-dimensional photonic crystal --- an approach by anodization technique ---h, Jpn. J.
Appl. Phys., vol. 34, no. 2B, pp. 1405-1408, 1995. (41)
32. T. Baba, Y. Yogo, K. Suzuki, T. Kondo, F. Koyama and K. Iga,
gVertical cavity surface emitting laser array for 1.3 mm range
parallel optical fiber transmissionsh, IEICE Trans. Electrons., vol. E77-C, no.
2, pp. 201-203, 1995. (3)
33.
T. Baba, T.
Kondo, F. Koyama and K. Iga, gFinite element analysis of thermal
characteristics in continuous wave long wavelength surface emitting lasers (I) --- dielectric cavity structures---h, Opt. Rev., vol. 2, no. 2, pp.
123-127, 1995. (7)
34. T. Baba, T. Kondo, F. Koyama and K. Iga, gFinite element analysis of
thermal characteristics in continuous wave long wavelength surface emitting
laser (II) --- semiconductor cavity
structures ---h, Opt. Rev., vol. 2,
no. 4, pp. 323-325, 1995. (4)
35. T. Baba and T. Matsuzaki, gTheoretical calculation of photonic gap
in semiconductor 2-dimensional photonic band structures with various shapes of
optical atomsh, Jpn. J. Appl. Phys., vol. 34, no. 8B,
pp. 4496-4498, 1995. (32)
36. T. Baba and T. Matsuzaki, gPolarization change in spontaneous
emission from GaInAsP/InP 2-dimensional photonic crystalsh, Electron. Lett.,
vol. 31, no. 20, pp. 1776-1778, 1995. (31)
37.
T. Baba, R.
Watanabe, K. Asano, F. Koyama and K. Iga, gTheoretical and experimental
estimations of photon recycling effect in light emitting devices with a metal
mirrorh, Jpn. J. Appl. Phys., vol. 35, no. 1A, pp.
97-100, 1996. (47)
38.
T. Baba and T. Matsuzaki, gFabrication and photoluminescence studies
of GaInAsP/InP 2-dimensional photonic crystalsh, Jpn.
J. Appl. Phys., vol. 35, no. 2B, pp. 1348-1352, 1996. (67)
39.
T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung,
A. Matsutani, T. Mukaihara,
F. Koyama and K. Iga, gA novel short cavity laser with deep grating distributed
Bragg reflectorsh, Jpn. J. Appl. Phys., vol. 35, no.
2B, pp. 1390-1394, 1996. (113)
40.
”nêr•FC¼è’m”üC_àV®‹vC’r“c[‹M,
gGaInAsP/InP 2ŽŸŒ³ƒtƒHƒgƒjƒbƒNŒ‹»h, ŒõŠw, vol. 25, no. 7, pp. 409-415, 1996.
41.
T. Baba,
42.
T. Baba, gPhotonic crystals and microdisk cavities
based on GaInAsP/InP systemh, IEEE J. Sel. Top. in Quantum Electron., vol. 3,
no. 3, pp. 808-830, 1997. (302, “¯Ž—ð‘ã32ˆÊ)
43. T.
Baba, M. Fujita, A. Sakai, M. Kihara and R. Watanabe, gLasing characteristics
of GaInAsP/InP strained quantum-well microdisk injection lasers with diameter
of 2--10 mmh, IEEE Photon. Technol. Lett., vol. 9, no. 7, pp.
878-880, 1997. (177)
44.
A. Sakai, H.
Yamada, M. Fujita and T. Baba, gProposal of optical near field probe using
evanescent field of microdisk lasersh, Jpn. J. Appl.
Phys., vol. 37, no. 2A, pp. 517-521, 1998. (11)
45. M. Fujita, K.
Inoshita and T. Baba, gRoom temperature continuous wave lasing characteristics
of GaInAsP/InP microdisk injection laserh, Electron. Lett., vol. 25, no. 3, pp.
278-279, 1998. (55)
46. H. Yamada, A. Sakai, M. Fujita and T. Baba, gOptical near field
probe action in a microdisk injection laser with 0.12l resolutionh,
Electron. Lett., vol. 35, no. 3, pp. 222-223, 1999. (9)
47. T.
Baba, N. Fukaya and J. Yonekura, gObservation of light propagation in photonic
crystal waveguides with bendsh, Electron. Lett., vol. 35, no. 8, pp. 654-655,
1999. (404,
“¯Ž—ð‘ã25ˆÊ)
48.
M. Fujita, A. Sakai and T. Baba, gUltra-small and
ultra-low threshold microdisk injection laser --- design, fabrication, lasing
characteristics and spontaneous emission factorh, IEEE J. Sel. Top. in Quantum
Electron., vol. 5, no. 6, pp. 673-681, 1999. (220)
49.
A. Sakai and T. Baba, gFDTD simulation of photonic devices and
circuits based on circular and fan-shaped disksh, J. Lightwave Technol., vol.
17, no. 8, pp. 1493-1499, 1999. (64)
50.
J. Yonekura, M. Ikeda and T. Baba, gAnalysis of finite
2-D photonic crystals of columns and lightwave devices using the scattering
matrix methodh, J. Lightwave Technol., vol. 18, no. 8, pp. 1500-1508, 1999. (218)
51.
T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A.
Matsutani, T. Miyamoto, F. Koyama and K. Iga, gStrong
enhancement of light extraction efficiency in GaInAsP 2-D photonic crystals of
columnsh, J. Lightwave Technol., vol. 17, no. 11, pp. 2113-2120, 1999. (114)
52. M.
Fujita, R. Ushigome and T. Baba, gContinuous wave lasing in GaInAsP microdisk
injection laser with threshold current of 40 mAh, Electron. Lett., vol. 36, no.
9, pp. 790-791, 2000. (224)
53.
N. Fukaya, D. Ohsaki and T. Baba,
gTwo-dimensional photonic crystal waveguides with 60º bends in a
thin slab structureh, Jpn. J. Appl. Phys., vol. 39,
no. 5A, pp. 2619-2623, 2000. (60)
54.
M. Ariga, Y. Sekido and T. Baba, gLow threshold GaInAsP lasers with
semiconductor/air DBR fabricated by inductively coupled plasma etchingh, Jpn. J. Appl. Phys., vol. 39, no. 6A, pp. 3406-3409, 2000. (36)
55. T. Baba, H. Yamada and A. Sakai, gDirect observation of lasing mode
in a microdisk laser by a near-field-probing techniqueh, Appl. Phys. Lett.,
vol. 77, no. 11, pp. 1584-1586, 2000. (11)
56.
T. Baba and
N. Fukaya, gLight propagation characteristics of defect waveguides in a
photonic crystal slabh, Photonic Crystals and Light Localization (Ed. M. Soukoulis), pp. 105-116, Kluwer Academic, 2001. (16)
57. H. Ichikawa, K. Inoshita and T. Baba, gReduction in surface
recombination of GaInAsP/InP microcolumns by CH4 plasma
irradiationh, Appl. Phys. Lett., vol. 78, no. 15, pp. 2119-2121, 2001. (38)
58. A.
Sakai, G. Hara and T. Baba, gPropagation characteristics of ultra-high D
optical waveguide on silicon-on-insulator substrateh, Jpn.
J. Appl. Phys., vol. 40, no. 4B, pp. L383-L385, 2001. (204)
59. M. Fujita, R.
Ushigome and T. Baba, gLarge spontaneous emission factor of 0.1 in a microdisk
injection laserh, IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 403-405,
2001. (65)
60. T. Baba, N.
Fukaya and A. Motegi, gClear correspondence between theoretical and
experimental light propagation characteristics in photonic crystal waveguidesh,
Electron. Lett., vol. 37, no. 12, pp. 761-762, 2001. (62)
61. M. Fujita, K. Teshima and T. Baba, gLow threshold continuous wave
lasing in photo-pumped GaInAsP microdisk lasersh, Jpn.
J. Appl. Phys., vol. 40, no.8B, pp. L875 - L877, 2001. (19)
62. M. Fujita, R. Ushigome, T. Baba, A. Matsutani,
F. Koyama and K. Iga, gGaInAsP microcylinder (microdisk) injection laser with
AlInAs(Ox) claddingsh, Jpn. J. Appl. Phys., vol. 40,
no. 9A, pp. 5338-5339, 2001. (13)
63.
T. Baba and D. Ohsaki,
gInterfaces of photonic crystals for high efficiency light transmissionh, Jpn. J. Appl. Phys., vol. 40, no. 10, pp. 5920-5924, 2001. (102)
64.
M. Fujita and T. Baba, gProposal and FDTD simulation of whispering
gallery mode microgear cavityh, IEEE J. Quantum
Electron., vol. 37, no. 10, pp. 1253-1258, 2001. (68)
65. M. Fujita, R. Ushigome and T. Baba, gStrain relaxation effect in
microdisk lasers with compressively-strained quantum wellsh, Appl. Phys. Lett.,
vol. 80, no. 9, pp. 1511-1513, 2002. (12)
66.
M. Fujita and T. Baba, gMicrogear
laserh, Appl. Phys. Lett., vol. 80, no. 12, pp. 2051-2053, 2002. (146)
67.
A. Sakai, T. Fukazawa and T. Baba, gLow loss ultra-small
branches in Si photonic wire waveguidesh, IEICE Trans. Electron., vol. E85-C,
no. 4, pp. 1033-1038, 2002. (115)
68.
T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe and A.
Sakai, gLight propagation characteristics of straight single line defect
optical waveguides in a photonic crystal slab fabricated into a
silicon-on-insulator substrate,h IEEE J. Quantum Electron., vol. 38, no. 7, pp.
743-752, 2002. (191)
69.
T. Baba and M. Nakamura, gPhotonic crystal light
deflection devices using the superprism effecth, IEEE
J. Quantum Electron., vol. 38, no. 7, pp. 909-914, 2002. (246)
70. T.
Baba and T. Matsumoto, gResolution of photonic crystal superprismh,
Appl. Phys. Lett., vol. 81, no. 13, pp. 2325-2327, 2002. (182)
71. K. Aoki, H.
T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya and Y. Aoyagi,
"Three-dimensional photonic crystals for optical wavelengths assembled by
micromanipulation", Appl. Phys. Lett., vol. 81, no. 17, pp. 3122-3124,
2002. (92)
72.
R. Ushigome,
M. Fujita and T. Baba, gGaInAsP microdisk Injection laser with Benzocyclobutene polymer cladding and its athermal effecth, Jpn. J. Appl.
Phys., vol. 41, no. 11A, pp. 6364-6369, 2002. (54)
73. T. Fukazawa, A. Sakai and T. Baba, gH-tree-type optical clock signal
distribution circuit by a Si photonic wire waveguideh, Jpn.
J. Appl. Phys., vol. 41, no. 12B, pp. L1461-L1463, 2002. (37)
74.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T.
Baba, K. Sakoda, N. Shinya and Y. Aoyagi, gMicroassembly of semiconductor
three-dimensional photonic crystalsh, Nature Materials, vol. 2, no. 1, pp.
117-121, 2003. (356)
75.
T. Baba and
T. Iwai, gEnhancement of third order nonlinearity calculated for
two-dimensional photonic crystalsh, Jpn. J. Appl.
Phys., vol. 42, no. 4A, pp. 1603-1608, 2003. (12)
76.
K. Inoshita
and T. Baba, gRoom temperature lasing characteristics of bend and branch in
photonic crystal waveguidesh, Jpn. J. Appl. Phys.,
vol. 42, no. 11, pp. 6887-6891, 2003. (14)
77.
T. Baba and D. Sano, gLow threshold lasing and Purcell
effect in microdisk lasers at room temperatureh, IEEE J. Sel. Top. Quantum
Electron., vol. 9, no. 5, pp. 1340-1346, 2003 (164) .
78.
K. Inoshita
and T. Baba, gFabrication of GaInAsP/InP photonic crystal lasers by ICP etching
and control of resonant mode in point and line composite defectsh, IEEE J. Sel.
Top. Quantum Electron., vol. 9, no. 5, pp. 1347-1354, 2003 (44).
79.
K. Nozaki, A. Nakagawa, D. Sano and T. Baba, gUltralow threshold and
singlemode lasing in microgear lasers and its fusion
with quasiperiodic photonic crystalsh, IEEE J. Sel. Top. Quantum Electron.,
vol. 9, no. 5, pp. 1355-1360, 2003 (81) .
80. K. Inoshita and T. Baba, gLasing at bend, branch and intersection of
photonic crystal waveguidesh, Electron. Lett., vol. 39, no. 11, pp. 844-846,
2003. (34)
81. T. Baba, M. Shiga and K. Inoshita, gCarrier plasma shift in GaInAsP
photonic crystal point defect cavityh, Electron. Lett., vol. 39, no. 21, pp.
1516-1518, 2003. (23)
82. H.
Ichikawa and T. Baba, gEfficiency enhancement in a light emitting diode with a
two-dimensional surface grating photonic crystalh, Appl. Phys. Lett., vol. 84,
no. 2, pp. 457-459, 2004. (186)
83. T.
Fukazawa, T. Hirano, F. Ohno and T. Baba, gLow loss intersection of Si photonic
wire waveguidesh, Jpn. J. Appl. Phys., vol. 42, no.
2, pp. 646-647, 2004. (181)
84.
A. Sakai, T.
Fukazawa and T. Baba, gEstimation of polarization crosstalk at a micro-bend in
Si photonic wire waveguideh, J. Lightwave Technol., vol. 22, no. 2, pp.
520-525, 2004 (35).
85.
T. Matsumoto and T. Baba, gPhotonic crystal k-vector superprismh, J. Lightwave Technol.,
vol. 22, no. 3, pp. 917-922, 2004 (74) .
86.
T. Matsumoto
and T. Baba, gDesign and FDTD simulation of photonic crystal k-vector
superprismh, IEICE Trans. Electron., vol. E87-C, no.
3, pp. 393-397, 2004. (4)
87. T.
Fukazawa, F. Ohno and T. Baba, gVery compact arrayed-waveguide-grating
demultiplexer using Si photonic wire waveguidesh, Jpn.
J. Appl. Phys., vol. 43, no. 5B, pp.L673 - L675, 2004. (237)
88. K.
Nozaki and T. Baba, gQuasiperiodic photonic crystal microcavity lasersh, Appl.
Phys. Lett., vol. 84, no. 24, pp. 4875-4877, 2004. (115)
89.
T. Baba, D. Mori, K. Inoshita and Y. Kuroki, gLight
localization in line defect photonic crystal waveguidesh, IEEE J. Sel. Top.
Quantum Electron., vol. 10, no. 3, pp. 484-491, 2004. (120)
90.
T. Baba, T.
Matsumoto and M. Echizen, gFinite difference time domain study of high
efficiency photonic crystal superprismsh, Opt.
Express, vol. 12, no. 19, pp. 4608-4613, 2004. (55)
91.
D. Mori and T. Baba, gDispersion-controlled optical
group delay device by chirped photonic crystal waveguidesh, Appl. Phys. Lett.,
vol. 85, no. 7, pp. 1101-1103, 2004. (220)
92.
T. Ide, T.
Baba, J. Tatebayashi, T. Iwamoto, T. Nakaoka and Y.
Arakawa, gLasing characteristics of InAs quantum-dot microdisk from 3K to room
temperatureh, Appl. Phys. Lett., vol. 85, no. 8, pp. 1326-1328, 2004. (45)
93.
T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama,
gObservation of fast spontaneous emission decay in GaInAsP photonic crystal
point defect nanocavity at room temperatureh, Appl. Phys. Lett., vol. 85, no.
18, pp. 3989-3991, 2004. (93)
94.
A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Morito, and T. Baba gHigh-power single-mode vertical-cavity
surface-emitting lasers with triangular holey structureh, Appl. Phys. Lett.,
vol. 85, no. 22, pp. 5161-5163, 2004. (181)
95.
A. Nakagawa, S. Ishii and T. Baba, gPhotonic molecule
lasers composed of GaInAsP microdisksh, Appl. Phys.
Lett., vol. 86, no. 4, pp. 041112, 2005. (140)
96. T. Ide, T. Baba, J. Tatebayashi, T.
Iwamoto, T. Nakaoka and Y. Arakawa, gRoom temperature continuous wave lasing
in InAs quantum-dot microdisks with air claddingh, Opt. Express, vol. 13, no. 5, pp. 1615-1620, 2005. (56)
97. ”nêr•F, âˆä“Ä, [àV’B•F, ‘å–앶², gSi×ü“±”g˜Hh, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J88-C,
no. 6, pp. 363-373, 2005 (µ‘Ò˜_•¶). (2)
98. K. Nozaki and T. Baba, gCarrier and
photon analyses of photonic microlasers by
two-dimensional rate equationsh, IEEE J. Sel. Area. Commun.,
vol. 23, no. 7, pp. 1411- 1417, 2005. (18)
99. F. Ohno, T. Fukazawa and T. Baba,
gMach-Zehnder interferometers composed of m-bends and m-branches in the Si photonic wire
waveguideh, Jpn. J. Appl. Phys., vol. 44, no. 7A, pp.
5322-5323, 2005. (33)
100.K. Sasaki, F. Ohno, A. Motegi and T. Baba, gArrayed
waveguide grating of 70 L 60 mm2
size based of Si photonic wire waveguidesh, Electron. Lett., vol. 41, no. 14,
pp. 801-802, 2005. (175)
101.K. Nozaki, T. Ide,
J. Hashimoto, W-H. Zheng and T. Baba, gPhotonic
crystal point-shift
photonic crystal nanolaser with ultimate small modal volumeh, Electron. Lett.,
vol. 41, no. 15, pp. 843-845, 2005. (38)
102.S. Ishii and T. Baba, gBistable lasing in twin microdisk photonic
moleculeh, Appl. Phys. Lett., vol. 87, no. 18, pp. 181102, 2005.
(82)
103.D.
Mori and T. Baba, gWideband and low dispersion slow light by chirped photonic
crystal coupled waveguideh, Opt. Express, vol. 13, no. 23, pp. 9398-9408, 2005. (240)
104.T. Matsumoto, S. Fujita and T. Baba, gWavelength
demultiplexer consisting of photonic crystal superprism
and superlensh, Opt. Express, vol. 13, no. 26, pp.
10768 – 10776, 2005.
(118)
105.S. Ishii, A. Nakagawa and T. Baba, gModal
characteristics and bistability in twin microdisk
photonic molecule laserh, IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 1,
pp. 71-77, 2006. (67)
106.W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K.
Nozaki and T. Baba, gDipole mode photonic crystal point defect laser on InGaAsP/InPh, J. Crystal Growth, vol. 292, no. 2, pp.
341-344, 2006. (22)
107.T. Ide, J.
Hashimoto, K. Nozaki, E. Mizuta and T. Baba, gInP etching by HI/Xe inductively
coupled plasma for photonic-crystal device fabricationh, Jpn.
J. Appl. Phys., vol. 45, no. 3, pp. L102-L104, 2006. (28)
108.K. Kiyota, T.
Kise, N. Yokouchi, T. Ide and T. Baba, gVarious low group velocity effects in
photonic crystal line defect waveguides and their demonstration by laser
oscillationh, Appl. Phys. Lett., vol. 88, no. 20, pp. 201904, 2006. (50)
109.K. Nozaki and T. Baba, gLasing
characteristics with ultimate-small modal volume in point shift photonic
crystal nanolasersh, Appl. Phys. Lett., vol. 88, no. 21, pp. 211101, 2006. (107)
110.H. Watanabe
and T. Baba, gActive/passive-integrated photonic crystal slab microlaserh, Electron. Lett., vol. 42, no. 12, pp. 695-696,
2006. (19)
111.K. Nozaki and
T. Baba, gLasing characteristics of 12-fold symmetric quasiperiodic photonic
crystal slab nanolasersh, Jpn. J. Appl. Phys., vol.
45, no. 8A, pp. 6087-6090, 2006.
(9)
112.S. Ishii, K.
Nozaki and T. Baba, gPhotonic molecules in photonic crystalh, Jpn. J. Appl. Phys., vol. 45, no. 8A, pp. 6108-6111, 2006. (31)
113.E. Mizuta, H. Watanabe and T. Baba, gAll
semiconductor low-D photonic crystal waveguide for semiconductor
optical amplifierh, Jpn. J. Appl. Phys., vol. 45, no.
8A, pp. 6116-6120, 2006. (75)
114.F. Ohno, K.
Sasaki and T. Baba, gReduction of sidelobe level in ultra-compact arrayed
waveguide grating demultiplexer based on Si wire waveguideh, Jpn. J. Appl. Phys., vol. 45, no. 8A, pp. 6126-6131, 2006. (24)
115.T. Matsumoto, K. Eom
and T. Baba, gFocusing of light by negative refraction in photonic crystal slab
superlens on SOI substrateh, Opt. Lett., vol. 31, no.
18, pp. 2786-2788, 2006. (97)
116.T. Baba and D. Mori, gSlowlight engineering in photonic crystalsh, J. Phys. D:
Appl. Phys., vol. 40, no. 9, pp. 2659-2665, 2007.(Invited Paper) (135)
117.D. Mori, S. Kubo, H. Sasaki and T. Baba,
gExperimental demonstration of wideband dispersion-compensated slow light by a
chirped photonic crystal directional couplerh, Opt. Express, vol. 15, no. 9,
pp. 5264-5270, 2007. (91)
118.K. Nozaki, S. Kita and T. Baba,
gRoom temperature continuous wave operation and controlled spontaneous emission
in ultrasmall photonic crystal nanolaserh, Opt. Express, vol. 15, no. 12, pp.
7506-7514, 2007.(288)
119.T. Kawasaki, D. Mori and T. Baba, gExperimental
observation of slow light in photonic crystal coupled waveguidesh, Opt.
Express, vol. 15, no. 16, pp. 10274-10281, 2007. (57)
120.T. Matsumoto,
T. Asatsuma and T. Baba, gExperimental demonstration
of a wavelength demultiplexer based on negative-refractive photonic-crystal
componentsh, Appl. Phys. Lett. vol. 91, no. 9, pp. 091117, 2007. (41)
121.S. Kubo, D. Mori and T. Baba,
gLow-group-velocity and low-dispersion slow light in photonic crystal
waveguidesh, Opt. Lett., vol. 32, no. 20, pp. 2981-2983, 2007. (224)
122.K. Nozaki, H. Watanabe and T. Baba, gPhotonic
crystal nanolaser monolithically integrated with passive waveguide for
effective light extractionh, Appl. Phys. Lett., vol. 92, no. 2, pp. 021108,
2008.
(80)
123.K. Nozaki, S.
Kita, Y. Arita and T. Baba, gResonantly photopumped
lasing and its switching behavior in a photonic crystal nanolaserh, Appl. Phys.
Lett., vol. 92, no. 2, pp. 021501, 2008. (5)
124.H. Watanabe
and T. Baba, gHigh-efficiency photonic crystal microlaser
integrated with a passive waveguideh, Opt. Express, vol. 16, no. 4, pp.
2694-2698, 2008. (32)
125.S. Kita, K. Nozaki and T. Baba,
gRefractive index sensing utilizing a cw photonic
crystal nanolaser and its array configurationh, Opt. Express, vol. 16, no. 11,
pp. 8174-8180, 2008. (130)
126.T. Asatsuma and T. Baba, gAberration reduction and unique
light focusing in a photonic crystal negative refractive lensh, Opt. Express,
vol. 16, no. 12, pp. 8711-8719, 2008. (26)
127.T. Baba, T. Kawasaki, H. Sasaki, J.
Adachi and D. Mori, gLarge delay-bandwidth product and tuning of slow light
pulse in photonic crystal coupled waveguideh, Opt. Express, vol. 16, no. 12,
pp. 9245-9253, 2008. (157)
128.T. Baba, gSlow light in photonic
crystalsh, Nature Photon., vol. 2, no. 8, pp. 465-473, 2008 (Invited Paper).
(2157, “¯Ž—ð‘ã10ˆÊ)
129.W. Zheng, G.
Ren, M. Xing, W. Chen, A. Liu, W. Zhou, T. Baba, K. Nozaki and L. Chen, gHigh
efficiency operation of butt joint line-defect waveguide microlaser
in two-dimensional photonic crystal slabh, Appl. Phys. Lett., vol. 93, no. 8,
pp. 081109, 2008. (10)
130.R. J. P. Engelen, D. Mori, T. Baba
and L. Kuipers, gTwo regimes of slow-light losses revealed by adiabatic
reduction of group velocityh, Phys. Rev. Lett., vol. 101, no. 10, pp. 103901,
2008. (129)
131.T. Baba, T.
Matsumoto and T. Asatsuma, gNegative refraction in
photonic crystalsh, Adv. Sci. Technol., vol. 15, pp. 91-100, 2008. (14)
132.T. Baba, T. Asatsuma and T. Matsumoto, gNegative refraction in photonic
crystalsh, MRS Bulletin, vol. 33, no. 10, pp. 907-910, 2008 (Invited Paper). (19)
133.R. J. P. Engelen,
D. Mori, T. Baba and L. Kuipers, gSubwavelength structure of the evanescent
field of an optical Bloch waveh, Phys. Rev. Lett., vol. 102, no. 2, pp. 023902,
2009. (44)
134.M. Burresi,
R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba and L. Kuipers, gObservation of
polarization singularities at nanoscale,h Phys. Rev. Lett., vol. 102, no. 3,
pp. 033902, 2009. (190)
135.Y. Hamachi, S. Kubo and T. Baba,
gSlow light with low dispersion and nonlinear enhancement in a lattice-shifted
photonic crystal waveguide,h Opt. Lett., vol. 34, no. 7, pp. 1072-1074, 2009. (238)
136.K. Suzuki, Y. Hamachi and T.
Baba, gFabrication and characterization of chalcogenide glass photonic crystal
waveguidesh, Opt. Express, vol. 17, no. 25, pp. 22393-22400, 2009. (94)
137.T. Baba, J.
Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori,
gDispersion-controlled slow light in photonic crystal waveguides,h Proc. Jpn. Sci. Academy Ser. B, vol. 85, no. 10, pp. 443-453,
2009 (Invited Paper). (16)
138.J. Adachi, N. Ishikura, H. Sasaki and T. Baba,
gWide range tuning of slow light pulse in SOI photonic crystal coupled
waveguide via folded chirpingh, IEEE J. Sel. Top. Quantum Electron., vol. 16,
no. 1, pp. 192-199, 2010 (Invited Paper). (78)
139.T. Baba, H.
Abe, T. Asatsuma, and T. Matsumoto, gPhotonic crystal
negative refractive opticsh, J. Nanosci. Nanotech.,
vol. 10, no. 3, pp. 1473-1481, 2010 (Invited Paper).(4)
140.Y. Saito and T. Baba, gStopping of light by the dynamic tuning of photonic
crystal slow light deviceh, vol. 18, no. 16, 17141-17153, 2010.
(19)
141.F. Shinobu, Y. Arita and T. Baba, gLow-loss simple waveguide intersection
in silicon photonicsh, Electron. Lett., vol. 46, no. 16, pp. 1149-1151, 2010.
(9)
142.S. Kita, S.
Hachuda, K. Nozaki and T. Baba, gNanoslot laserh,
Appl. Phys. Lett., vol. 97, no. 16, pp. 161108, 2010.
(31)
143.K. Suzuki and
T. Baba, gNonlinear light propagation in chalcogenide photonic crystal slow
light waveguidesh, Opt. Express, vol. 18, no. 25, pp. 26675-26685, 2010
(Invited Paper). (61)
144.Y. Arita, N.
Yoshikawa and T. Baba, gIntegration of optical waveguides with single flux
quantum circuitsh, IEEE Trans. Appl. Superconductivity, vol. 21, no. 3, pp.
839-842, 2011. (1)
145.H. C. Nguyen, Y. Sakai, M. Shinkawa,
N. Ishikura and T. Baba, g10 Gb/s operation of photonic crystal silicon optical
modulatorsh, Opt. Express, vol. 19, no. 14, pp. 13000-13007, 2011. (111)
146.F. Shinobu,
Y. Arita, T. Tamanuki, N. Ishikura and T. Baba, gContinuously tunable
slow-light device consisting of heater-controlled silicon microring arrayh,
Opt. Express, vol. 19, no. 14, pp. 13557-13564, 2011. (39)
147.S. Kita, S. Otsuka, S. Hachuda, T. Endo, Y.
Imai, Y. Nishijima, H. Misawa and
T. Baba, gSuper-sensitivity in label-free protein sensing using nanoslot nanolaserh, Opt. Express, vol. 19, no. 18, pp.
17683-17690, 2011. (94)
148.S. Kita, K.
Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita and
T. Baba, gPhotonic crystal point-shift nanolaser with and without nanoslots --- design, fabrication, lasing and sensing
characteristicsh, IEEE J. Sel. Top. Quantum Electron., vol. 17, 2011 (Invited
Paper). (58)
149.N. Inoue and
T. Baba, gSpectral and polarization characteristics of photonic crystal under
normally incident light and their tuning with liquid crystal controlh, Jpn. J. Appl. Phys., vol. 50, no. 10, pp. 102203, 2011.
150.M. Shinkawa, N. Ishikura, Y. Hama, K.
Suzuki and T. Baba, gNonlinear enhancement in photonic crystal slow light
waveguides fabricated using CMOS-compatible processh, Opt. Express, vol. 19,
no. 22, pp. 22208-22218, 2011. (106)
151.N. Ishikura,
T. Baba, E. Kuramochi and M. Notomi, gLarge tunable
fractional delay in slow light pulse and its application to fast optical
correlatorh, Opt. Express, vol. 19, no. 24, pp. 24102-24108, 2011.
(33)
152.”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚É‚æ‚éV¢‘ãŒõWςƃCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“h, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 94, no. 12, pp. 1037-1040, 2011 (µ‘Ò˜_•¶)
153.H. C. Nguyen,
Y. Sakai, M. Shinkawa, N. Ishikura and T. Baba, gPhotonic crystal silicon
optical modulators: carrier-injection and depletion at 10 Gb/sh, IEEE J.
Quantum Electron., vol. 48, no. 2, pp. 210-220, 2012 (Invited Paper). (51)
154.S. Kita, S.
Otsuka, S. Hachuda, T. Endo, Y. Imai, Y. Nishijima, H. Misawa and T. Baba, gPhotonic crystal nanolaser
bio-sensorsh, IEICE Trans. Electron., vol. E95-C, no. 2, pp. 188-198, 2011
(Invited Paper).(12)
155.K. Suzuki, H.
C. Nguyen, T. Tamanuki, F. Shinobu, Y. Saito, Y. Sakai and T. Baba,
gSlow-light-based variable symbol-rate silicon photonics DQPSK receiverh, Opt.
Express, vol. 20, no. 4, pp. 4796-4804, 2012. (56)
156.M. Narimatsu, S. Kita, H. Abe and T. Baba, gEnhancement of vertical
emission in photonic crystal nanolasers,h Appl. Phys. Lett., vol. 100, no. 12,
pp. 121117, 2012. (39)
157.N. Ishikura,
R. Hayakawa, R. Hosoi, T. Tamanuki, M. Shinkawa and T. Baba, gPhotonic crystal
tunable slow light device integrated with multi-heaters,h Appl. Phys. Lett.,
vol. 100, no. 22, pp. 221110, 2012. (65)
158.H. C. Nguyen, S. Hashimoto, M.
Shinkawa and T. Baba, gCompact and fast photonic crystal silicon optical
modulators,h Opt. Express, vol. 20, no. 20, pp. 22465-22474, 2012. (121)
159.R. Hayakawa,
N. Ishikura and T. Baba, gTwo-photon-absorption photodiodes in photonic-crystal
slow-light waveguidesh, Appl. Phys. Lett., vol. 102, no. 3, pp. 031114, 2013. (44)
160.K. Kondo, M. Shinkawa, Y. Hamachi, Y. Saito, Y.
Arita, and T. Baba, gUltrafast slow-light tuning beyond the carrier lifetime
using photonic crystal waveguidesh, Phys. Rev. Lett., vol. 110, no. 5, pp.
053902, 2013. (75)
161.S. Hachuda,
S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima
and T. Baba, gSelective detection of sub-atto-molar streptavidin in 1013-fold
impure sample using photonic crystal nanolaser sensorsh, Opt. Express, vol. 21,
no. 10, pp. 12815-12821, 2013. (55)
162.T. Baba, H.
C. Nguyen, N. Ishikura, K. Suzuki, M. Shinkawa, R. Hayakawa and K. Kondo, gSi
photonic crystal slow light devicesh, IEICE Electron. Express, vol. 10, no. 10,
pp. 1-15, 2013 (Invited Paper). (13)
163.R. Hayakawa, N.
Ishikura, H. C. Nguyen and T. Baba, gHigh-speed delay-tuning of slow-light in
pin-diode-incorporated photonic crystal waveguideh, Opt. Lett., vol. 38, no.
15, pp. 2680-2682, 2013. (13)
164.H. C. Nguyen,
N. Yazawa, S. Hashimoto, S. Otsuka and T. Baba, gSub-100 mm photonic
crystal Si optical modulators: spectral, athermal and
high-speed performanceh, IEEE J. Sel. Top. Quantum Electron., 2013 (Invited
Paper). (53)
165.T. Watanabe,
H. Abe, Y. Nishijima and T. Baba, "Array integration of thousands of
photonic crystal nanolasers", Appl. Phys. Lett., vol. 104, no. 12, pp.
121108, 2014. (18)
166.”nêr•F, "CMOSƒvƒƒZƒX‚ð—p‚¢‚½ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX", ƒŒ[ƒU[Œ¤‹†,
vol. 42, no. 3, pp. 223-228, 2014 (µ‘Ò˜_•¶).
167.T. Baba, H.
C. Nguyen, N. Yazawa, Y. Terada, Hashimoto, T. Watanabe, "Slow-light
Mach-Zehnder modulators based on Si photonic crystals", Sci. Technol. Adv.
Mat., vol. 15, no. 2, pp. 024602, 2014 (Invited Paper). (64)
168.K. Kondo and
T. Baba, "Dynamic wavelength conversion in copropagating slow-light
pulses",
Phys. Rev. Lett., vol. 112, no. 22, pp. 223904, 2014. (39)
169.Y. Terada, H.
Ito, H. C. Nguyen and T. Baba, "Theoretical and experimental investigation
of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder
modulators with interleaved p/n junction ",
Front. Phys., vol. 2, no. 61, pp. 1-9, 2014. (39)
170.H. Ito, N.
Ishikura and T. Baba, "Triangular-shaped coupled microrings
for robust wavelength multi-/demultiplexing in Si photonics", J. Lightwave
Technol., vol. 33, no. 2, pp. 304-310, 2014. (13)
171.K. Watanabe,
Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima and T. Baba,
"Simultaneous detection of refractive index and surface charges in
nanolaser biosensors", Appl. Phys. Lett., vol. 106, no. 2, pp. 021106,
2015. (41)
172.K. Kondo, N.
Ishikura, T. Tamura and T. Baba, "Temporal pulse compression by dynamic
slow-light tuning in photonic crystal waveguides", Phys. Rev. A, vol. 91,
no. 02, pp. 023831, 2015. (17)
173.D. Takahashi,
S. Hachuda, T. Watanabe, Y. Nishijima and T. Baba, "Detection of endotoxin
using a photonic crystal nanolaser", Appl. Phys. Lett., vol. 106, no. 13,
pp. 131112, 2015. (20)
174.T. Tamura, K.
Kondo, Y. Terada, Y. Hinakura, N. Ishikura and T. Baba, "Silica-clad
silicon photonic crystal waveguides for wideband dispersion-free slow
light", J. Lightwave Technol., vol. 33, no. 14, pp. 3034-3040, 2015. (40)
175.H.
Abe, M. Narimatsu, T. Watanabe, T. Furumoto, Y. Yokouchi, Y. Nishijima, S.
Kita, A. Tomitaka, S. Ota, Y. Takemura and T. Baba,
"Living-cell imaging using a photonic crystal nanolaser array," Opt.
Express, vol. 23, no. 13, pp. 17056-17066, 2015. (22)
176.S.
Kinugasa, N. Ishikura, H. Ito, N. Yazawa and T. Baba, "One-chip
integration of optical correlator based on slow-light devices", Opt.
Express, vol. 23, no. 16, pp. 20767-20773, 2015. (15)
177.H. Ito, Y. Terada, N. Ishikura and T. Baba,
"Hitless tunable WDM transmitter using Si photonic crystal optical
modulators", Opt. Express, vol. 23, no. 17, pp. 21629-21636, 2015.
(8)
178.T.
Baba, gBiosensing using photonic crystal nanolasersh, MRS Commun.,
vol. 5, no. 4, pp 555 - 564, 2015 (Invited Paper). (31)
179.Y.
Terada, K. Miyasaka, H. Ito and T. Baba, gSlow-light effect in a silicon
photonic crystal waveguide as a sub-bandgap photodiodeh, Opt. Lett., vol. 41,
no. 2, pp. 289-292, 2016. (15)
180.K.
Kondo and T. Baba, gSlow-light-induced Doppler shift in photonic-crystal
waveguidesh, Phys. Rev. A (Rapid Commun.), vol. 93,
no. 1, pp. 011802(R), 2016D(22)
181.Y. Hinakura,
Y. Terada, T. Tamura and T. Baba, gWide spectral characteristics of Si photonic
crystal Mach-Zehnder modulator fabricated by complementary
metal–oxide–semiconductor processh, Photonics, vol. 3, no. 2, pp. 17(1-11),
2016. (34)
182.K. Hojo, Y.
Terada, N. Yazawa, T. Watanabe and T. Baba, gCompact QPSK and PAM modulators
with Si photonic crystal slow light phase shiftersh, IEEE Photon. Technol.
Lett., vol. 28, no. 13, pp. 1438-1441, 2016. (14)
183.M. Sakemoto,
Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura and T. Baba, gCell imaging
using GaInAsP semiconductor photoluminescenceh, Opt. Express, vol. 24, no. 10,
pp. 11232-11238, 2016. (11)
184.S. Hachuda, T. Watanabe, D. Takahashi and T. Baba, gSensitive and
selective detection of prostate-specific antigen using a photonic crystal
nanolaserh, Opt. Express, vol. 21, no. 10, pp. 12815-12821, 2016. (15)
185.”nêr•F, ‰H’†“c¯Ži,
“n粌h‰î, “n•”H,
ˆ¢•”hŽm, ‚‹´‘å’n,
ŠÝ—mŽŸ, Žð–{^ˆß,
gGaInAsP”¼“±‘̃iƒmƒŒ[ƒU‚̃oƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J100-C, no. 2,
pp. 61-71, 2017 (µ‘Ò˜_•¶).
186.Y. Terada, T.
Tatebe, Y. Hinakura and T. Baba, gSi photonic crystal slow-light modulators
with periodic p–n junctionsh, J. Lightwave Technol., vol. 35, no. 9, pp.
1684-1692, 2017. (39)
187.H.
Hashiguchi, K. Kondo, T. Baba and H. Arai, gAn optical leaky wave antenna by
waffled structure,h J. Lightwave Technol., vol. 35, no. 11, pp. 2273-2279,
2017. (21)
188.K. Kondo and
T. Baba, gOn-chip autocorrelator using counter-propagating slow light in a
photonic crystal with two-photon absorption photodiodesh, Optica, vol. 4, no.
9, pp. 1109-1112, 2017. (16)
189.T. Watanabe,
Y. Saijo, Y. Hasegawa, K. Watanabe, Y. Nishijima and T. Baba,
"Ion-sensitive photonic-crystal nanolaser sensors," Opt. Express,
vol. 25, no. 20, pp. 24469-24479, 2017. (32)
190.Y. Terada, K.
Miyasaka, K. Kondo, N. Ishikura, T. Tamura and T. Baba, gOptimized optical
coupling to silica-clad photonic crystal waveguideh, Opt. Lett., vol. 42, no.
22, pp. 4695-4698, 2017. (14)
191.K. Kondo, T.
Tatebe, S. Hachuda, H. Abe, F. Koyama and T. Baba, "Fan beam steering
device using a photonic crystal slow-light waveguide with surface diffraction
grating", Opt. Lett., vol. 42, no. 23, pp. 4990-4993, 2017. (57)
192.Y. Terada, K.
Kondo, R. Abe and T. Baba, "Full-C-band Si photonic-crystal-waveguide
modulator", Opt. Lett., vol. 42, no. 24, pp.5110-5112, 2017. (39)
193.H.
Hashiguchi, T. Baba and H. Arai, gPlane wave excitation by taper array for
optical leaky waveguide antennah, IEICE Electron. Express, vol. 15, no.2,
pp.1-6, 2018. (2)
194.K. Kondo and
T. Baba, gHigh-performance on-chip autocorrelator using counter-propagating
pulses and a rib waveguideh, Opt. Lett., vol. 43, no. 4, pp. 719-722, 2018. (3)
195.K. Kondo and
T. Baba, gAdiabatic wavelength redshift by dynamic carrier depletion using p-n
diode-loaded photonic crystal waveguidesh, Phys. Rev. A, vol. 97, no. 03, pp.
033818 (1-5), 2018. (7)
196.H. Abe, M.
Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado and T. Baba,
gTwo-dimensional beam-steering device using a doubly periodic Si
photonic-crystal waveguideh, Opt. Express, vol. 26, no. 8, pp. 9389-9397, 2018. (67)
197.G. Takeuchi, Y.
Terada, M. Takeuchi, H. Abe, H. Ito and T. Baba, gThermally controlled Si
photonic crystal slow light waveguide beam steering deviceh, Opt. Express, vol.
26, no. 9, pp.11529-11537, 2018. (38)
198.Y. Hinakura,
Y. Terada, H. Arai and T. Baba, gElectro-optic phase matching in Si photonic
crystal slow light modulator using meander-line electrodesh, Opt. Express, vol.
26, no. 9, pp.11538-11545, 2018.(14)
199.K. Watanabe,
M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima and T. Baba, gLabel-free and spectral-analysis-free
detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP
nanolaser biosensorh, Biosen. Bioelectron.,
vol. 117, no., pp. 161-167, 2018. (17)
200.Y. Furukado,
H. Abe, Y. Hinakura and T. Baba, gExperimental simulation of ranging action
using Si photonic crystal modulator and optical antennah, Opt. Express, vol.
26, no. 14, pp. 18222-18229, 2018. (11)
201.H. Ito, T.
Tatebe, H. Abe and T. Baba, gWavelength-division multiplexing Si photonic
crystal beam steering device for high throughput parallel sensingh, Opt.
Express, vol. 26, no. 20, pp. 26145-26155, 2018. (16)
202.H.
Hashiguchi, T. Baba and H. Arai, gOptical beam expander with parabolic photonic
bandgap reflector for efficient excitation of optical leaky wave antennah, J.
Lightwave Technol., vol. 37, no. 9, pp. 2094-2099, 2019. (4)
203.H. Iwase and
T. Baba, "Electromagnetic-field imbalance in surface plasmon polariton and
its role in slow propagation and field-matter interaction", J. Opt. Soc.
Am. B, vol. 36, no. 5, pp. 1327-1334, 2019. (1)
204.Y. Hinakura,
H. Arai and T. Baba, "64 Gbps Si photonic crystal slow light modulator by
electro-optic phase matching", Opt. Express, vol. 27, no. 10, pp.
14321-14327, 2019. (32)
205.Y. Saijo, K.
Watanabe, T. Watanabe, Y. Terada, Y. Nishijima and Toshihiko Baba,
"Iontronic control of GaInAsP photonic crystal nanolaser", Appl.
Phys. Lett., vol. 114, no. 22, pp. 221105, 2019. (3)
206.T. Baba,
"Photonic and iontronic sensing in GaInAsP
semiconductor photonic crystal nanolasers", Photonics, vol. 6, no. 65, pp.
1-17, 2019. (6)
207.R. Tetsuya,
H. Abe, H. Ito and T. Baba, gEfficient light transmission, reception and beam
forming in photonic crystal beam steering device in a phased array
configurationh, Jpn. J. Appl. Phys., vol. 58, no.
082002, pp. 1-5, 2019. (5)
208.K. Watanabe
and T. Baba, "Enhanced pH sensitivity in photoluminescence of GaInAsP
semiconductor photonic crystal slab", Opt. Express, vol. 27, no. 18, pp.
24978-24988, 2019. (3)
209.M. A. Gaafar,
T. Baba, M. Eich and A. Yu. Petrov, gFront-induced transitionsh, Nature
Photonics, https://doi.org/10.1038/s41566-019-0511-6, 2019. (55)
210.J. Maeda, D.
Akiyama, H. Ito, H. Abe and T. Baba, gPrism lens for beam collimation in
silicon photonic crystal beam-steering deviceh, Opt. Lett., vol. 44, no. 23,
pp. 5780-5783, 2019. (5)
211.A. Sakata, K.
Watanabe and T. Baba, gOptimization of atomic layer deposition temperature of
ZrO2 coat for GaInAsP photonic crystal nanolaser sensorh, Jpn. J. Appl. Phys., vol. 59, no. 012001, pp. 1-3, 2020. (1)
212.R. Abe, T.
Takeda, R. Shiratori, S. Shirakawa, S. Saito and T. Baba, gOptimization of H0
photonic crystal nanocavity using machine learningh, Opt. Lett., vol. 45, no.
2, pp. 319-322, 2020. (5)
213.H. Ito, Y. Kusunoki, J. Maeda, D.
Akiyama, N. Kodama, H. Abe, R. Tetsuya, and T. Baba, gWide beam steering by
slow-light waveguide grating and prism lensh, Optica, vol. 7, no. 1, pp. 47-52,
2020. (103)
214.M. Kamata, Y.
Hinakura and T. Baba, gCarrier-suppressed single sideband signal for FMCW LiDAR
using Si photonic crystal optical modulatorsh, J. Lightwave Technol., vol. 38,
no. 8, pp. 2315-2321, 2020. (6)
215.Y. Hinakura,
H. Arai and T. Baba, gDevelopment of 64 Gbps Si photonic crystal modulatorh,
IEICE Trans. Electron., vol. E103-C, no. 11, pp. 635-644, 2020 (Invited Paper).
216.”nêr•F, ˆÉ“¡Š°”V,
ˆ¢•”hŽm, ‹ÊŠÑŠx³,
’|“àŒå˜N, ŒÃ–å—D–í,
—‘q—z‰î, ‘O“c“Õ,
HŽR‘å’n, ‘q‹´—È,
“í˜Ð^, “S–î—È,
Š™“cŠ²–ç, ”’’¹—É,
‹ß“¡Œ\—S, Œš•”’m‹I,
’|“à–G], ”Š_Œ’—S,
Ž™‹Ê’¼–ç, ‰¡ì•üŽ÷,
gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒXƒ[ƒ‰ƒCƒgƒ‰ƒCƒ_‚ÌŠJ”h, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J103-C, no. 11,
pp. 434-452, 2020 (µ‘Ò˜_•¶)
217.Y. Hinakura,
D. Akiyama, H. Ito, and T. Baba, "Silicon photonic crystal modulators for
high-speed transmission and wavelength division multiplexing", IEEE J.
Sel. Top. Quantum Electron., vol. 27, no. 3, pp. 4900108, 2021. (Invited
Paper) (31)
218.T. Tamanuki,
H. Ito and T. Baba, "Thermo-optic beam scanner employing silicon photonic
crystal slow-Light waveguides", J. Lightwave Technol., vol. 39, no. 4, pp.
904-911, 2021.@(Invited
Paper) (1)
219.K. Watanabe,
A. Sakata and T. Baba, gpH-sensitive GaInAsP photonic crystal fractal band-edge
laserh, Opt. Lett., vol. 45, no. 22, pp. 6202-6205, 2020.
220.S. Kaneoka, W. Iida, H. Hashiguchi, T. Baba and H. Arai, gOptical
high-gain leaky-wave antenna by using a waffle-iron waveguideh, IEICE Electron.
Express, vol., 18, no. 1, pp. 20200411, 2021.
221.R. Shiratori,
M. Nakata, K. Hayashi and T. Baba, gParticle swarm optimization of silicon
photonic crystal waveguide transitionsh, Opt. Lett., vol. 46, no. 8, pp.
1904-1907, 2021 (34)
222.A. Balcytis,
T. Ozawa, Y. Ota, S. Iwamoto, J. Maeda and T. Baba, gSynthetic dimension band
structures on a Si CMOS photonic platform", arXive.2105.13742, 2021. (1)
223.J. Gondo, H.
Ito, T. Tamanuki, and T. Baba, gSpace-time-domain observation of high-speed
optical beam scanning in a thermo-optic Si photonic crystal slow-light beam
scannerh, Opt. Lett., vol. 46, no. 15, pp. 3600-3603, 2021.
224.M. Nomoto, G.
T. Konopaske, N. Yamashita, R. Aoki, A. Jitsuki-Takahashi,
H. Nakamura, H. Makihara, M. Saito, Y. Saigusa, F.
Nakamura, K. Watanabe, T. Baba, F. M. Benes, B. T. D. Tobe,
C. D. Pernia, J. T. Coylec, R. L. Sidman, Y. Hirayasu, E. Y. Snyder, and Y. Goshima,
gClinical evidence that a dysregulated master neural network modulator may aid
in diagnosing schizophreniah, PNAS, vol. 118, no. 31, pp. e2100032118 (1-7),
2021.
225.K. Hirotani,
R. Shiratori and T. Baba, gSi photonic crystal slow-light waveguide optimized
by informatics technologyh, Opt. Lett., vol. 46, no. 17, pp. 4422-4425, 2021.
226.S. Suyama, H.
Ito, R. Kurahashi, H. Abe and T. Baba, gDoppler velocimeter and vibrometer FMCW
LiDAR with Si photonic crystal beam scannerh, Opt. Express, vol. 29, no. 19,
pp. 30727-30734, 2021.
227.R. Tetsuya,
T. Tamanuki, H. Ito, H. Abe, R. Kurahashi, M. Seki, M. Ohtsuka, N. Yokoyama, M.
Okano and T. Baba, gSi photonic crystal optical antenna serial array and
frequency-modulated continuous-wave light detection and ranging actionh, Appl.
Phys. Lett., vol. 119, no.23, pp.231103 (1-5), 2021.
228.A. Balcytis,
T. Ozawa, Y. Ota, S. Iwamoto, J. Maeda and T. Baba, gSynthetic dimension band
structures on a Si CMOS photonic platformh, Sci. Adv., vol. 8, no. eabk0468,
pp. 1-9, 2022.
229.T. Baba, T.
Tamanuki, H. Ito, M. Kamata, R. Tetsuya, S. Suyama, H. Abe, R. Kurahashi,
gSilicon photonics FMCW LiDAR chip with slow light grating beam scannerh, IEEE
J. Sel. Top. Quantum Electron., vol. 28, no. 5, pp. 8300208, 2022 (Invited
Paper).(40)
230.K. Takahashi
and T. Baba, gOptimization of a photonic crystal nanocavity using covariance
matrix adaptation evolution strategyh, IEEE Photon. J., vol. 14, no. 3, pp.
8624505, 2022.
231.L.
Li, H. Arai and T. Baba, gImaging of electromagnetic waves using radio over
fiber system including Si photonics microring modulator arrayh, Opt. Express,
vol. 30, no. 18, pp. 31530-31538, 2022.
232.VˆäG”V,
‹´ŒûOC”nêr•F, g6GŒõ–³ü—p‚—˜“¾Œõ˜R‚ê”gŒ^ƒr[ƒ€‘–¸ƒAƒ“ƒeƒih, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J105-B, no. 10,
pp. 741-748, 2022 (µ‘Ò˜_•¶).
233.J.
Gondo, T. Tamanuki, R. Tetsuya, M. Kamata, H. Ito, T. Baba, gStep-like beam
scanning in slow-light grating beam scanner for FMCW LiDARh, Opt. Lett., vol.
47, no. 20, pp. 5341-5343, 2022.
234.L.
Li, T. Tamanuki and T. Baba, gAll-optic control using a photo-thermal heater in
Si photonicsh, Opt. Express, vol. 31, no. 23, pp. 41874-41883, 2022.
235.S. Suyama and
T. Baba, gHigh-efficiency upward radiation in slow-light grating beam scannerh,
Opt. Express, vol. 31, no.13, pp. 22170-22178, 2023.
236.M. Kamata and T. Baba, gOFDR analysis of Si photonics FMCW
LiDAR chiph, Opt. Express, vol. 31, no. 15, pp. 25245-25252, 2023.
237.M. Kamata, T.
Tamanuki, R. Kubota, and T. Baba, gAmbient light
immunity of frequency-modulated continuous-wave (FMCW) LiDAR chiph, Opt.
Express, vol. 32, no. 3, pp. 3997-4012, 2024.
238.S. Yamazaki,
T. Tamanuki, H. Ito, R. Kubota and T. Baba, gSilicon FMCW LiDAR chip integrated
with SLG beam scanner and k-clock interferometer for operation with
wavelength-swept laser sourceh, Opt. Express, vol. 32, no. 12, pp. 21191-21199,
2024.
239.H. X. Dinh,
A. Balčytis1, T. Ozawa, Y. Ota, G. Ren, T. Baba, S. Iwamoto, A. Mitchell, and
T. G. Nguyen, gReconfigurable synthetic dimension frequency lattices in an
integrated lithium niobate ring cavityh, Commun.
Phys., vol. 7, no. 185, 2024.
’˜‘
1.
š •ª‘×—Y, ”nêr•F, ”÷¬ŒõŠw‚Ì•¨—“IŠî‘b
(‰ž—p•¨—Šw‰ïŒõŠw§˜b‰ï•ÒW)
gŒõ“±”g˜H‚ÌŠî‘bh,
pp. 17-40, ’©‘q‘“X, 1991.
2.
T. Baba and K. Iga,
gSpontaneous emissions in microcavity surface emitting lasersh, Spontaneous
emission and laser operation in microcavities (Edited by K. Ujihara
and H. Yokoyama), pp. 237-273, CRC Press, 1995. (6)
3.
T. Baba and T.
Matsuzaki, gGaInAsP/InP 2-dimensional photonic crystalsh, Microcavities and
Photonic Bandgaps (Edited by J. Rarity and C. Weisbuch),
pp. 193-202, Kluwer Academic Publishers, The Netherlands, 1996.
4.
T. Baba,
gElectron-photon interaction in photonic crystalsh, Mesoscopic Physics and
Electronics (Edited by T. Ando, Y. Arakawa, K. Furuya, S. Komiyama and H.
Nakashima), Springer Verlag,
5.
”nêr•F, g–Ê”ŒõƒŒ[ƒU‚ÆŽ©‘R•úo§Œäh,
–Ê”ŒõƒŒ[ƒU‚ÌŠî‘b‚Ɖž—piˆÉ‰êŒ’ˆê,
¬ŽR“ñŽO•v•ÒWj,
pp. 159-179, ‹¤—§o”Å, 1999.
6.
”nêr•F, gŽ©‘R•úo§ŒäŒõƒfƒoƒCƒXh,
—ÊŽqHŠwƒnƒ“ƒhƒuƒbƒN
(‘å’ÃŒ³ˆê,
rì‘וF•ÒW),
pp. 508-534, ’©‘q‘“X, 1999.
7.
T. Baba and N.
Fukaya, gLight propagation characteristics of defect waveguides in a photonic
crystal slabh, Photonic Crystals and Light Localization (Ed. M. Soukoulis), pp. 105-116, Kluwer Academic, 2001.
8.
”nêr•F, g‘àFƒtƒHƒgƒjƒbƒNŒ‹»Œ`”¼“±‘Ì”Œõ‘fŽq‚ÌŠT—vh, gƒtƒHƒgƒjƒbƒNŒ‹»“_Œ‡Š×ƒŒ[ƒUh, ƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŠî‘b‚ÆŒõƒfƒoƒCƒX‚ւ̉ž—p(ì㲓ñ˜Y•Ò), pp. 185-205, 2002.
9.
S.
Noda and T. Baba, Eds., Roadmap on Photonic Crystals, Kluwer Academic, 2003. (288)
10.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒoƒ“ƒhh, gƒtƒHƒgƒjƒbƒNŒ‹»h,“ü–åƒrƒWƒ…ƒAƒ‹ƒTƒCƒGƒ“ƒX ƒiƒmƒeƒN‚Ì‚µ‚‚Ý (‚–ö–M•v, ‘¼•Ò’˜),
ŽÀ‹Æo”Å, 2004.
11.
”nêr•F, g‚»‚Ì‘¼‚Ì”¼“±‘̃Œ[ƒU[h, ƒŒ[ƒU[ƒnƒ“ƒhƒuƒbƒN, ƒI[ƒ€ŽÐ,
2004.
12.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “dŽq•¨«EÞ—¿‚ÌŽ–“T, ’©‘q‘“X, 2004.
13.
T. Baba, gApplications of photonic crystals:
general devicesh, Photonic Crystals: Physics and Applications (Eds. K. Inoue
and K. Ohtaka), Springer Verlag, pp. 237-260, 2004.
14.
T. Baba, gPhotonic crystalsh, Encyclopedic
Handbook of Integra rated Optics (Eds. K. Iga and Y. Kokubun), Marcel Dekker,
2004.
15.
”nêr•F, g‚»‚Ì‘¼‚Ì”¼“±‘̃Œ[ƒU[h, ƒŒ[ƒU[ƒnƒ“ƒhƒuƒbƒN, ƒI[ƒ€ŽÐ,
2005.
16.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, Œõ‰ÈŠwŒ¤‹†‚ÌÅ‘Oü, “ú–{Šwp‰ï‹c, pp. 24-25,
2005
17.
”nêr•F, gVCSEL‚ÆLED‚Ì“Á«‰ü‘Ph,
gŠTàh, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚ƃVƒŠƒRƒ“×üh, gƒtƒHƒgƒjƒbƒNŒ‹»”÷¬ƒŒ[ƒUh, ƒtƒHƒgƒjƒbƒNŒ‹»‹Zp‚ÌV“WŠJ ---ŽY‹Æ‰»‚Ö‚Ì“®Œü--- (ì㲓ñ˜Y•ÒW),
ƒV[ƒGƒ€ƒV[o”Å, pp. 28-36, 205-221,
250-258, 2005.
18.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒfƒoƒCƒX‚ÆŒõWÏ‹Zph, ‰ÈŠw—§‘“ú–{‚ð‘n‚é---Åæ’[ƒGƒŒƒNƒgƒƒjƒNƒX•ª–ì‚Å‹ÉŒÀ‚É’§‚Þ‹C‰s‚ÌŒ¤‹†ŽÒ‚½‚¿, “úŠ§H‹ÆV•·ŽÐ,
pp. 103-110, 2006.
19.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “dŽq•¨«EÞ—¿‚ÌŽ–“T, ’©‘q‘“X, 2005.
20.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŠî‘bh, ƒiƒmƒIƒvƒeƒBƒNƒXEƒiƒmƒtƒHƒgƒjƒNƒX‚Ì‚·‚ׂÄi‰Í“c‘ŠÄCj, ƒtƒƒ“ƒeƒBƒAo”Å, pp. 42-48, 2006.
21.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Ì컂ƌõŠw“Á«h, ƒtƒHƒgƒjƒNƒXƒVƒŠ[ƒY, 2006.
22.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÆŒõ§Œäh, ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX---æ’[ŒõƒeƒNƒmƒƒW[‚ÌV“WŠJ
i‹àŒõ, [’ÕÒj,
ƒI[ƒ€ŽÐ, 2007.
23.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, Œõ‰ÈŠwŒ¤‹†‚ÌÅ‘Oü2, p. 23, 2009.
24.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚ƃXƒ[ƒ‰ƒCƒgh, gƒXƒ[ƒ‰ƒCƒg‚ÆŒõƒoƒbƒtƒ@[‰ž—ph, ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢‚ÌÅ‹ß‚Ìi“Wi–ì“ciŠÄCj, CMCo”Å, 2010.
25.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚ƃXƒ[ƒ‰ƒCƒgŠT—vCƒXƒ[ƒ‰ƒCƒg‚ÆŒõƒoƒbƒtƒ@[‰ž—ph, ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢‚ÌÅ‹ß‚Ìi“W, ƒV[ƒGƒ€ƒV[o”Å, pp. 81-97, 2011.
26.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚Ìi“W‚ƃXƒ[ƒ‰ƒCƒgh, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ“W–]h, “dŽqî•ñ’ÊMŠw‰ïƒnƒ“ƒhƒuƒbƒN’mŽ¯î•ñƒx[ƒX, ƒI[ƒ€ŽÐ, 2011.
27.
T. Baba, gPhotonic crystal waveguides and slow
lighth, Handbook of Silicon Photonics (Series in Optics and Optoelectronics)
(Eds. L. Vivien and L. Pavesi), CRC Press, pp. 298-321, 2013.
28.
”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»", ŒõŠw‹Zp‚ÌŽ«“T(•“c, r–Ø,
‘å–Ø, •“c,
X, –î“cŠL•Ò),
’©‘q‘“X, pp. 296-298, 2014.
‰ðà˜_•¶
1. ˆÉ‰êŒ’ˆê,
”nêr•F,
g–Ê”ŒõƒŒ[ƒU‚̃uƒŒ[ƒNƒXƒ‹[hCƒGƒŒƒNƒgƒƒjƒNƒX,
ƒI[ƒ€ŽÐCno.
8, pp. 89-92, 1993.
2. ˆÉ‰êŒ’ˆê,
”nêr•F,
g1.3mm‘Ñ–Ê”ŒõƒŒ[ƒUh,
ƒIƒvƒgƒƒjƒNƒXCvol.
12, no. 11, pp. 47-51, 1993D
3. ”nêr•F,
g–Ê”ŒõƒŒ[ƒU‚ÌŒ»ó‚Æ«—ˆhCOPCOM
News, vol. 12, no. 2, p. 15, 1995.
4. ”nêr•F,
g–ÊŒ^”¼“±‘̃Œ[ƒUh,
ŒõŠw,
vol. 25, no. 3, pp. 144-145, 1996.
5. ”nêr•F,
g”¼“±‘Ì”÷¬‹¤UŠí‚ÆŽ©‘R•úo§Œäh,
ŒÅ‘Ì•¨—,
vol. 32, no. 11, pp. 859-869, 1997.
6. ”nêr•F,
g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚ð—˜—p‚µ‚½’´‚Œø—¦Œõ‹Zph,
Telecom FLONTIER, no. 20, pp. 20-29, 1998.
7. ”nêr•F,
g–Ê”ŒõƒŒ[ƒU‚Ì•¨—‚Ɖۑèh,
ŒõŠw,
vol. 27, no. 10, pp. 112-117, 1998.
8. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚é”÷¬ƒŒ[ƒU‚ÆŒõ‰ñ˜Hh,
“dŽqî•ñ’ÊMŠw‰ïŽ,
vol. 81, no. 10, pp. 1067-1069, 1998.
9. ”nêr•F,
’r“c[‹MC_‘ò®‹vCH.
G. Blom, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚»‚̉ž—ph,
‰ž—p•¨—,
vol. 67, no. 9, pp. 1041-1045, 1998.
10. ”nêr•F,
g”÷¬”¼“±‘Ì”Œõ‘fŽq‚ÆŽü•Ó‹Zph,
ƒ}ƒCƒNƒƒƒJƒgƒƒjƒNƒX,
vol. 42, no. 4, 1998.
11. ”nêr•F,
g–¢—ˆ‚ð‘ñ‚ƒtƒHƒgƒjƒbƒNŒ‹»h,
ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒIƒvƒgƒjƒ…[ƒY,
vol. 112, no. 4, pp. 50-53, 1999.
12. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»
--- V‚µ‚¢Œõ‹Zph,
O plus E, vol. 21, no. 12, pp. 1524-1531, 1999.
13. ”nêr•F,
•yŽm“c½”V,
âˆä“Ä,
ŽR“c‘׎j,
_Œ´_•½,
gGaInAsP“d—¬’“üŒ^ƒfƒBƒXƒNƒŒ[ƒU‚Ì’´”÷¬‰»‚Ɖž—p‹Zph, ‰ž—p•¨—,
vol. 68, no. 12, pp. 1353-1358, 1999.
14. –ì“ci,
”nêr•F,
¬â‰p’j•ÒW,
gƒtƒHƒgƒjƒbƒNŒ‹»ƒ[ƒhƒ}ƒbƒv
--- Œ¤‹†‚ÌŒ»ó‚Æ¡Œã‚Ì“W–]h,
ŒõŽY‹Æ‹ZpU‹»‹¦‰ï,
2000.
15. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»Þ—¿h,
Electronic Ceramics, vol. 13, no. 9, pp. 19-24, 2000.
16. ”nêr•F,
[’J®Žu,
âˆä“Ä,
gƒ}ƒCƒNƒƒKƒCƒhh,
O plus E, vol. 22, no. 10, pp. 1300-1306, 2000.
17.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Þ—¿‚Ɖž—p‹Zph,“dŽqî•ñ’ÊMŠw‰ïŽ, vol. 84, no. 3, pp. 172-176, 2001.
18.
”nêr•F, g‹ÉŒÀ”÷¬Œõ‘fŽq‚ÌŒ¤‹†h, ^‹óƒWƒƒ[ƒiƒ‹,
no. 75, pp. 34-35, 2001.
19.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»”Œõ‘fŽq‚ÌŒ»óh, ƒIƒvƒgƒƒjƒNƒX, vol. 20, no. 7, pp. 192-196, 2001.
20.
”nêr•F, ˆä‰º‹žŽ¡, ŽsìO”V,
gƒvƒ‰ƒYƒ}ƒvƒƒZƒX‚É‚æ‚锼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‰ÁH‚Æ•\–ʈ—h, •\–ʉȊw, vol. 22, no. 11, pp. 710-714, 2001.
21.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹» --- V‚µ‚¢Œõ‹Zph,
’´¸–§, vol. 11, pp. 47-51, 2001.
22.
”nêr•F, guƒtƒHƒgƒjƒbƒNŒ‹»‚ÌÅVƒgƒŒƒ“ƒhv‰ðଓÁW‚ɂ悹‚Äh, ƒŒ[ƒU[Œ¤‹†, vol. 30, no. 2, p. 58, 2002.
23.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŒ»ó‚Æ«—ˆh, “úŒoæ’[‹Zp, no. 6, pp. 12-15, 2002.
24.
”nêr•F, gƒIƒvƒgƒGƒŒƒNƒgƒƒjƒNƒXEŒõƒfƒoƒCƒXh, ŒõŠw, vol. 31, no. 5, pp. 237-238, 2002.
25.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚̃Cƒ“ƒpƒNƒgh, Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 40, no. 8, pp. 463-472, 2002.
26.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«•ª‰È‰ïŽ, vol. 9, no. 3, pp. 156-157, 2003.
27.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹» --- ‚»‚ÌŒ´—‚Ɖž—ph,
“ú–{ŠwpU‹»‰ïŠwpŒŽ•ñ, vol. 56, no. 9, pp.
915-919, 2003.
28.
T. Baba, gPhotonic crystal and high index
contrast structure devicesh, IEEE/LEOS News Letter, vol. 18, no. 3, pp. 11-12,
2004
29.
”nêr•F, ’†ì“Ö¶, Έä—,
gƒ}ƒCƒNƒƒfƒBƒXƒN‚É‚æ‚éƒtƒHƒgƒjƒbƒN•ªŽqƒŒ[ƒU --- V‚µ‚¢Œõ‹@”\‘fŽq‚Ö‚ÌŠú‘Ò---g, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 88, no. 2, pp. 105-109, 2004.
30.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œõ‹@”\‘fŽq‚Ì—DˆÊ«h, ‰ž—p•¨—, vol. 23, no. 2, pp. 167-172, 2005.
31.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, Œ»‘㉻Šw,
no. 408, pp. 55-59, 2005.
32.
”nêr•F, X‘å—S, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg¶¬h, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 89, no. 6, pp. 494-499, 2006.
33.
–ì茪Œå, ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»/€Œ‹»”÷¬ƒŒ[ƒU‚ÆŽ©‘R•úo§Œäh, ƒŒ[ƒU[Œ¤‹†, vol. 34, no. 11, pp. 756-760, 2006.
34. ”nêr•F, gŒõ‚ÌŒ‹»‚Æ‹¤‚Éh,
ŠwpŒŽ•ñ, vol. 59, no. 5, pp. 47-48, 2006.
35.
T. Baba, gPhotonic crystals remember the
lighth, Nature Photonics, vol. 1, no. 1, pp. 11-12, 2007.(60)
36.
”nêr•F, g‚‹üÜ—¦·ƒVƒŠƒRƒ“Œõ“±”g˜H‚ªŽÀŒ»‚·‚éŒõŽó“®ƒfƒoƒCƒXh, ƒŒ[ƒU[Œ¤‹†, vol. 35, 2007.
37.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒNƒŠƒXƒ^ƒ‹h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïŒõ‹Zp“®Œü’²¸•ñ‘, 2007.
38.
”nêr•F, gƒVƒŠƒRƒ“”÷¬“±”g˜H‚Æ‚»‚̃fƒoƒCƒX‰ž—ph, ŒõŠw, vol. 37, no. 1, pp. 7-13, 2008.
39.
T. Baba, gSilicon gets the green lighth, Nature
Photon., vol. 3, no. 4, pp. 190-192, 2009.
40.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, Œõ‰ÈŠwŒ¤‹†‚ÌÅ‘Oü2, p. 23, 2009.
41.
”nêr•F, g‹‘å\‘¢•ªŽU‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg‹Zph, Telecom Frontier, no.
29, pp. 4-13, 2009.
42.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÅŒõ‚𑀂éh, ZENIS Magazine, no.
1, pp. 92-93, 2009.
43.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, ƒGƒŒƒNƒgƒƒjƒNƒXŽÀ‘•Šw‰ïŽ, vol. 12, no. 5, pp. 458-463, 2009.
44.
”nêr•F, g•ªŽU§ŒäƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚É‚æ‚éƒXƒ[ƒ‰ƒCƒgh, ƒŒ[ƒUŒ¤‹†, vol. 37, no. 8, pp. 572-577, 2009.
45.
”nêr•F, gƒXƒ[ƒ‰ƒCƒg‚Æ‚»‚̉ž—ph, ƒpƒŠƒeƒB, vol. 24, no. 10, pp. 56-60, 2009.
46.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚é’´‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ƒIƒvƒgƒƒjƒNƒX, no. 381, pp. 104-108, 2013
47.
”nêr•F, H. C.
Nguyen, Ž›“c—z—C, "ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zp‚É‚æ‚éƒtƒHƒgƒjƒbƒNŒ‹»Œõ•Ï’²Ší", ƒIƒvƒgƒƒjƒNƒX, vol. 390, pp. 79-83, 2014.
48.
”nêr•F, Ž›“c—z—C, H. C. Nguyen, "ƒtƒHƒgƒjƒbƒNŒ‹»Œõ•Ï’²Ší", O Plus E, vol.
36, no. 9, pp. 1011-1014, 2014.
49.
”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ‰ƒu‚Ì“ñ‚‚̉ž—p", Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 52, no. 10, pp. 11-17, 2014.
50.
”nêr•F, gƒiƒmƒXƒƒbƒgƒŒ[ƒU‚Ì‹ÉŒÀ“I‚ÈŒõ‹ÇÝ‚ð—˜—p‚·‚é’´‚Š´“xƒoƒCƒIƒ}[ƒJ[ƒZƒ“ƒTh, “ú–{ŠwpU‹»‰ï‰ÈŒ¤”ïNewS, vol. 2, p.
10, 2015.
51.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚ðŽg‚Á‚½ƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 53, no. 625, pp. 30-35, 2015.
52.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒŒ[ƒU‚̈ã—Éž—ph, O plus E, vol. 38,
no. 2, pp. 136-138, 2016
53.
”nêr•F, gƒiƒmƒŒ[ƒU‚̃Zƒ“ƒVƒ“ƒO‰ž—ph, ƒIƒvƒgƒƒjƒNƒX, no. 411, pp. 81-86, 2016.
54.
‹ß“¡Œ\—S, ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚É‚¨‚¯‚鋤“`”ÀE‹t“`”ÀƒXƒ[ƒ‰ƒCƒgŒnh, ‰ž—p•¨—,
vol. 85, no. 7, 2016.
55.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚é’´‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ‰»ŠwH‹Æ, vol. 68, no. 2, pp. 36-42, 2017.
56.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚̶‘̃Zƒ“ƒVƒ“ƒO‰ž—ph, ƒIƒvƒgƒƒjƒNƒX, vol. 425, no. 5, pp. 83-87, 2017.
57.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ð—p‚¢‚½’´¬Œ^LiDARŠJ”h, ŒõŠw,
vol. 47, no. 3, pp. 100-105, 2018.
58.
”nêr•F, gŒ¤‹†Žº‚ð‘n‚éh, Œõ‹ZpƒRƒ“ƒ^ƒNƒg,
vol. 56, no. 4, pp. 1-3, 2018
59.
”nêr•F, gƒXƒ[ƒ‰ƒCƒg\‘¢‘Ì‚ð—˜—p‚µ‚½”ñ‹@ŠBŽ®ƒnƒCƒŒƒ]ŒõƒŒ[ƒ_[‚ÌŠJ”h, ƒIƒvƒgƒƒjƒNƒX, no. 5, pp. 68-72, 2018
60.
”nêr•F, gƒXƒ[ƒ‰ƒCƒg‹Zp‚ð—p‚¢‚½¬Œ^LiDAR‚ÌŠJ”‚Æ‘ª‹—‹Zph, ŒŽŠ§ŽÔÚƒeƒNƒmƒƒW[, vol. 6, no. 2, pp. 12-15, 2018.
61.
”nêr•F, gGaInAsP ”¼“±‘̃iƒmƒŒ[ƒU‚̃oƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, “dŽqî•ñ’ÊMŠw‰ïƒGƒŒƒNƒgƒƒjƒNƒXƒ\ƒTƒCƒGƒeƒBNews Letter, no. 172,
2019.
62.
”nêr•F, gØŽèƒTƒCƒYƒ‰ƒCƒ_‚ÌŽÀŒ»‚ÉŒü‚¯‚Äh, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 102, no. 7, pp. 649-653, 2019.
63.
”nêr•F, gØŽèƒTƒCƒYƒ‰ƒCƒ_‚ÌŽÀŒ»‚ÉŒü‚¯‚Äh, ƒŒ[ƒU[Œ¤‹†, vol. 48, no. 2, pp. 73-82, 2020.
64.
”nêr•F, gƒXƒ[ƒ‰ƒCƒg“±”g˜H‚ð—p‚¢‚½ƒr[ƒ€‘|ˆøƒfƒoƒCƒXh, O Plus E, vol. 42,
no. 2, pp. 177-180, 2020.
65.
”nêr•F, g”ñ‹@ŠBŽ®ƒ‰ƒCƒ_ƒ`ƒbƒv‚ð–ÚŽw‚µ‚Ä^ƒXƒ[ƒ‰ƒCƒg‚ƃvƒŠƒYƒ€ƒŒƒ“ƒY‚É‚æ‚éLŠpƒr[ƒ€•ÎŒüh, ŒõŠw, vol. 50, no. 6, p. 252, 2021
66.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚É‚¨‚¯‚éƒXƒ[ƒ‰ƒCƒg¶¬‚Æ‚»‚̉ž—ph, ƒIƒvƒgƒƒjƒNƒX, vol. 41, no. 483, pp. 96-100, 2022.
67.
”nêr•F, gƒXƒ[ƒ‰ƒCƒgLiDARh, ƒIƒvƒgƒƒjƒNƒX,
vol. 41, no. 490, pp. 71-75, 2022.
68.
”nêr•F, g¬Œ^E‚‘¬ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒgƒ}ƒbƒnƒcƒFƒ“ƒ_[•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 105, no. 11, pp. 1356-1360, 2022.
69.
”nêr•F, gƒr[ƒ€ƒXƒLƒƒƒ“Œ^FMCWƒ‰ƒCƒ_‚̃ƒ“ƒ`ƒbƒv‰»h, “dŽqî•ñ’ÊMŠw‰ïŽ, vol. 106,
no. 2, pp. 136-142, 2023.
70.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ð—p‚¢‚½’´¬Œ^ƒ‰ƒCƒ_[h, Œõ‹ZpƒRƒ“ƒ^ƒNƒg, vol. 61, no. 12, pp. 11-19, 2023
‘Û‰ï‹cµ‘Òu‰‰
1. Y. Kokubun and T. Baba, gARROW and its
application to integrated photonic devicesh, Third Optoelectronic Conf., Makuhari, no. 13B4-2, 1990.
2. K. Iga and T. Baba, gSelf
aligned fiber micro connectorsh, 11th Gradient-Index Optical Systems
Topical Meeting,
3. F. Koyama, T. Baba and K. Iga, gPresent
status and future prospects of long wavelength surface emitting lasersh, 20th
European Conf. Opt. Commun.,
4. T. Baba and T. Matsuzaki, g2D photonic
crystal with multiple refractive index stepsh, NATO Advanced Research Workshop
gPhotonic Bandgap Materialsh,
5. T. Baba, gGaInAsP/InP photonic crystalsh,
NATO Advanced Research Workshop gQuantum Optics in Wavelength Scale
Structuresh,
6. T. Baba, gPhotonic band and whispering
gallery mode emittersh, 10th IEEE/LEOS Annual Meeting,
7. T. Baba, M. Ikeda, N. Kamizawa
and H. G. Blom, gSemiconductor 2-D photonic
crystalsh, 17th Electronic Materials Symposium, Izunagaoka,
no. G1, 1998.
8. T. Baba, gPhotoluminescence in GaInAsP/InP
2-D photonic crystalsh, Workshop on Electromagnetic Crystal Systems, Los
Angels, no. IV-4, 1999.
9. T. Baba, gUltra-small and
ultra-low-threshold microdisk injection lasers with evanescent coupled
elementsh, Int. Photon. Res. Conf.,
10. T. Baba, N. Fukaya and J. Yonekura,
gObservation of light propagation in 2-D photonic crystal optical waveguides
with bendsh, Int. Photon. Res. Conf.,
11. T. Baba, gLight emission and waveguiding in
semiconductor photonic crystalsh, Int. Conf. Solid State Devices and Materials,
12. T. Baba, gFabrication and characterization
of photonic bandgap materialsh, Int. Conf. Ternary and Multinary
Compounds,
13. T. Baba, M. Fujita and A. Sakai,
gMicrodisk-based Photonicsh, Int. Sympo.
Ultra-Parallel Optoelectronics,
14. T. Baba, gControl of light emission and
guiding in 2-D photonic crystalsh, Int. Workshop on Photonic and
Electromagnetic Crystal Structures,
15. T. Baba, N. Fukaya and D. Ohsaki, gLight propagation characteristics in defect
waveguides in a photonic crystal statesh, NATO Advanced Research Workshop
gPhotonic Crystals and Light Localizationh,
16. T. Baba, gPhotonic crystals by planar
technologiesh, Optoelectronic Conf., Makuhari, no.
12D-1-3, 2000.
17. T. Baba, gPhotonic microstructures ---
microdisk lasers and photonic waveguidesh, IEEE/LEOS Annual Meeting,
18. T. Baba, gRecent development of microdisk
lasers and waveguidesh, Int. Topical Meet. Indium Phosphide and Related Mat.,
19. T. Baba, gLight propagation characteristics
of microguides in photonic crystal slabsh, Int.
Workshop on Photonic and Electromagnetic Crystal Structures,
20. T. Baba,
21. T. Baba, gPhotonic crystals and microlasersh, Asia-Pacific Radio Science Conf.,
22. T. Baba, gPhotonic lasers and waveguidesh,
Korean Photon. Conf.,
23. T. Baba, gPhotonic micro/nanostructures for
PBG and index confinementsh, Int. Sympo. Contemporary
Photon. Technol.,
24.
T. Baba and
H. Ichikawa, gPhotonic crystal light extractor in light emitting devicesh,
Optoelectronic and Commun. Conf.,
25. T. Baba, gLight transmission in photonic
bandgap waveguides and photonic band crystalsh, SPIE gActive and Passive
Optical Components for WDM Communication IIh,
26. T. Baba, gPhotonic crystals and microlasersh, IEEE/LEOS Annual Meet., Glasgow, no. WS-1,
2002.
27. T. Baba, K. Inoshita, D. Sano, A. Nakagawa
and K. Nozaki, gMicrolasers based on photonic crystal
concepth, SPIE "Photonic Crystal Materials and Devices",
28. T. Baba, gProgress in microdisk and related
lasersh, Int. Sympo. Nanotechnology for Photonics and
Opto-Electronics,
29. T. Baba, gPhotonic crystals and
micro-/nano-lasersh, JSPS-Sweden Colloquium,
30. T. Baba, K. Inoshita, T. Matsumoto, H.
Ichikawa and T. Iwai, gDevice applications of semiconductor photonic crystalh,
Int. Sympo. Femto-Second Technol., Makuhari, no. TD-3, 2003.
31. T. Baba, K. Inoshita, T. Matsumoto, D. Mori,
H. Ichikawa and T. Iwai, gSemiconductor photonic crystal and nanostructure
devicesh, IEEE/LEOS Opt. MEMS,
32. T. Baba, gSemiconductor photonic crystal
devicesh, Int. Conf. Solid State Devices and Mat.,
33. T. Baba, gLight propagation and localization
in photonic crystalsh, Progress in Electromagnetic Res. Sympo.,
34. T. Baba, gPhotonic crystals and high index
contrast devicesh, IEEE/LEOS Annual Meet.,
35. T. Baba, gUltra-small light emitting
devicesh, Fall Meet. Material Res. Soc.,
36. T. Baba, gPhotonic crystals, an
introductionh, Japanese-American Frontiers of Science, Shonan,
no. 7-1, 2003.
37. T. Baba, A. Nakagawa, D. Sano, K. Nozaki and
S. Ishii, gRecent progress on microdisk lasersh, Int. Semicon.
Laser Conf. 2004 Pre-Conf.,
38.
T. Baba and
T. Matsumoto, gLight propagation in photonic crystal superprismsh,
SPIE "Photonic Crystal Materials and Devices",
39.
T. Baba,
gPhotonic crystal applications to optoelectronic devicesh, Int. Sympo. Photonic and Electromagnetic
40.
T. Baba,
gPhotonic crystals and related photonic nanodevicesh, Int. Top. Meet. Indium
Phosphide and Related Mat.,
41.
T. Baba, D.
Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, gPurcell effect in photonic crystal nanocavityh, Optoelectronic and Commun. Conf.,
42.
T. Baba,
gRecent progress on semiconductor photonic crystal devicesh, Conf. Emerging
Technol. Opt. Sci.,
43.
T. Baba,
gSilicon photonic wire waveguidesh, SPIE "Nano-Engineering: Fabrication,
Properties, Optics, and Devices",
44.
T. Baba,
gActive and passive photonic crystal functional devicesh, European Conf. Opt. Commun.,
45.
T. Baba,
gNovel optoelectronic devices based on photonic crystalsh, Int. Workshop on
Photonic Crystals,
46.
T. Baba,
gPhotonic crystals and high index contrast structuresh, IEEE/LEOS Annual Meet.,
47.
T. Baba,
gUnique optoelectronic devices based on photonic crystalsh, IEEE/LEOS Annual
Meet.,
48.
T. Baba, T.
Ide and S. Ishii, gMicrodisk lasers --- quantum-dot lasing and bistabilityh, SPIE Photonic West "Novel In-Plane
Semiconductor Lasers IV", San Jose, no. 5738-35, 2005.
49.
A. Furukawa
and S. Sasaki, M. Hoshi, A. Matsuzono, K. Morito and
T. Baba, gHigh-power single-transverse-mode holey VCSELsh, SPIE Photonic West
"Physics and Simulation of Optoelectronic Devices XIIIh, no. 5722-23,
50.
T. Baba,
gFast spontaneous emission and slow light propagation in photonic crystalsh,
Quantum Electron. and Laser Sci. Conf., Baltimore, no. QWD-1, 2005.
51.
T. Baba,
gSlow light engineering by chirped photonic crystal waveguidesh, Int. Sympo. Photonic and Electromagnetic
52.
T. Baba,
gPhotonic crystal devicesh, Int. Conf. Mat. Advanced Technol.,
53.
T. Baba,
gPhotonic nanostructure optoelectronic devicesh, Int. Mini-Conf. gSystem
Construction of Global-Network-Oriented information Electronicsh,
54.
T. Baba,
gPhotonic crystals and high index contrast structure devicesh, IEEE/LEOS Annual
Meet., Sydney, no. SC102, 2005 (Short Course Lecture).
55.
T. Baba, T.
Ide, S. Ishii, J. Tatebayashi, T. Iwamoto, T. Nakaoka
and Y. Arakawa, gQuantum-dot lasing and photonic molecule behavior in microdisk
lasersh, IEEE/LEOS Annual Meet., Sydney, no. ThZ1, 2005.
56.
T. Baba,
gPhotonic crystalsh, Micro-Optic Conf.,
57.
T. Baba,
gRecent progress on photonic crystal functional devicesh, Asia-Pacific
Microwave Photon. Conf.,
58.
T. Baba, K.
Nozaki and S. Ishii, gSemiconductor nanolasers and photonic moleculesh, IEEE
Int. Conf. Transparent Optical Networks,
59.
T. Baba and
D. Mori, gPotential of slowlight in photonic
crystalh, Asia-Pacific Opt. Commun., Gwangju, no.
6351-74, 2006.
60.
T. Baba,
gPhotonic and optical phenomena in photonic crystals and their applicationsh,
IEEE/LEOS Distinguished Lecturers Meet.,
61.
T. Baba,
gControl of light emission and propagation in semiconductor photonic
nanostructuresh, Int. Conf. Solid State Devices and Mat.,
62.
T. Baba,
gPhotonic crystal emitters and light control devicesh, IEEE Int. Semicon. Laser Conf.,
63.
T. Baba, D.
Mori,
64.
T. Baba,
gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished
Lecturers Meet.,
65.
T. Baba and
T. Matsumoto, gNegative refraction in photonic crystalsh, RIKEN Int.
Nano-Photon. Sympo., Wako, no. 4, 2006.
66.
T. Baba,
gState-of-the-art photonic nanostructure devicesh, Multiconf.
Electron. and
67.
T. Baba,
gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished
Lecturers Meet.,
68.
T. Baba,
gState-of-the-art photonic nanostructure devicesh, IEEE/LEOS Distinguished
Lecturers Meet.,
69.
T. Baba and
D. Mori, gSlowlight engineering in photonic
crystalsh, J. Phys. D, 2007.
70.
T. Baba, gHow can we stop light ?h,
Contemporary Photon. Technol., Rump Session: "Photonic Technologies
towards the Next Decade", no. 6, 2007.
71.
T. Baba, gState-of-the-art photonic
nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Poland, 2007.
72.
T. Baba, gState-of-the-art photonic
nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Norfolk, 2007.
73.
T. Baba, gState-of-the-art photonic
nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Washington DC,
2007.
74.
T. Baba, gState-of-the-art photonic
nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Rochester,
2007.
75.
T. Baba, T. Matsumoto, K. Nozaki and D. Mori,
gProgress of photonic crystal slab devicesh, Photon. Electromag.
Crystal Structures, Monterey, no. 6, 2007.
76.
T. Baba, gState-of-the-art photonic
nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Albuquerque,
2007.
77.
T. Baba, gState-of-the-art photonic
nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Boston, 2007.
78.
T. Baba, D. Mori, T. Kawasaki, S. Kubo and H.
Sasaki, gControlled slowlight in photonic crystalsh,
OSA Slow and Fast Light Top. Meet., Salt Lake City, no. SWB1, 2007.
79.
T. Baba, gControlled slowlight
and miniature devices based on Si photonics waveguidesh, IEEE/LEOS Int. Conf.
Group IV Photon., Tokyo, no. FA1, 2007.
80.
T. Baba, gState-of-the-art photonic
nanostructure devicesh, IEEE Advanced Packaging Symp., San Jose, 2007.
81.
T. Baba, gState-of-the-art photonic
nanostructure devicesh, IEEE/LEOS Distinguished Lecturers Meet., Santa Clara
Valley, 2007.
82.
T. Baba, D. Mori, T. Kawasaki, S. Kubo, and H.
Sasaki, "Useful slow light in photonic crystal devices", SPIE
Photonic West, San Jose, no. 6904-27, 2008.
83.
T. Baba, gRecent progress in photonic crystal
devicesh, JST-DFG gNanoelectronicsh Japan-German Int. Workshop, Archen, no. 5-4, 2008.
84.
T. Baba, gToward photonic crystal optical
bufferh, Conf. Laser and Electro-Optics, San Jose, no. CWH1, 2008.
85.
T. Baba, K. Nozaki, S. Kita and H. Watanabe,
gPhotonic crystal nanolaser --- unique lasing and spontaneous emission
characteristicsh, Euro. Mat. Res. Soc., Strasbourg, no. DTu2-1, 2008.
86.
T. Baba, T. Matsumoto and T. Asatsuma, gNegative refraction in photonic crystalsh, Int.
Conf. Smart Mat., Structures & Sys., Sicily, no. B1-2-1, 2008.
87.
T. Baba, gControl of light emission and
propagation in photonic crystalsh, Int. Nano-Optoelectronics Workshop (iNOW), Tokyo, Saiko and Shonan,
no. M1-2, 2008.
88.
T. Baba, gPhotonic crystals and silicon
photonicsh, Int. Nano-Optoelectronics Workshop (iNOW),
Tokyo, Saiko and Shonan, no. RS2-5, 2008.
89.
T. Baba, gRecent progress on photonic crystal
slow light deviceh, Asia Opt. Fiber Commun. &
Optoelectronic Expo. & Conf., Shanghai, no. SuD1, 2008.
90.
T. Baba, H. Sasaki, J. Adachi, T. Kawasaki and
D. Mori, "Dispersion-free slow light pulse and its functionalities",
SPIE Photonic West, San Jose, no. 7226-3, 2009.
91.
T. Baba, H. Sasaki and J. Adachi, gTunable slow
light pulse in photonic crystalsh, Int. Sympo.
Photon. Electromag. Structures, Sydney, no. 100,
2009.
92.
T. Baba, gPhotonic nanostructures for
functional devicesh, Japan-Finland Functional Materials Workshop, Helsinki, no.
1(3), 2009.
93.
T. Baba, S. Kita, and K. Nozaki, gPhotonic
crystal nanolaser and its applicationsh, Int. Conf. Mat. Advanced Tech.,
Singapore, 2009.
94.
T. Baba, H. Sasaki, J. Adachi, N. Ishikura, Y.
Hamachi, K. Yamada and Y. Saito, gDispersion-controlled slow light in photonic
crystal waveguidesh, OSA Slow and Fast Light Top. Meet., Hawaii, no. JMA1,
2009.
95.
T. Baba, gSlow light with photonic crystalh,
Int. Nano-Optoelectronics Workshop (iNOW), Tokyo,
Stockholm, no. FrA1, 2009.
96.
T. Baba, J. Adachi, N. Ishikura, Y. Hamachi and
Y. Saito, gControl of light speed in photonic crystal waveguide devicesh,
Pacific Rim Conf. Laser and Electro-Optics, Shanghai, 2009.
97.
T. Baba, gSemiconductor microcavities for
lasing and switching operationh, Int. Workshop on Digital Photonics with
Semiconductor Ring and Disk Lasersh, Pisa, no. A1, 2009.
98.
T. Baba, gPhotonic crystal slow light devices
--- tunable delay, nonlinearity, dynamic tuningh, Opt. Fiber Commun. Conf., San Diego, no. OMP1, 2010.
99.
T. Baba, gTunable slow light in photonic
nanostructuresh, European Conf. Integ. Opt.,
Cambridge, no. ThI-1, 2010.
100.T. Baba,
gLight control in photonic nanostructuresh, Int. Sympo.
Organic and Inorganic Electron. Mat. Related Nanotech., Toyama, no. B2-1, 2010.
101.T. Baba and
S. Kita, gPhotonic crystal nanolaser --- its fabrication, laser characteristics
and bio-sensing applicationsh, Int. Conf. Laser Opt., St. Petersburg, no.
ThR3-24, 2010.
102.T. Baba,
gAdvances in photonics and nanophotonics based on Si
technologiesh, Optoelectronic and Commun. Conf.,
Sapporo, no. WS2-1, 2, 2010.
103.T. Baba, S.
Kita and K. Suzuki, gBio-sensing and nonlinear enhancement using photonic
crystalsh, Int. Nano-Optoelectronics Workshop (iNOW),
Beijing, 2010.
104.T. Baba,
gOn-chip slow light with CMOS photonic crystalsh, European Conf. Opt. Commun., Turin, 2010.
105.T. Baba, gWhy
must nanolasers be so small?h, IEEE Int. Semicon.
Laser Conf., Kyoto, 2010.
106.T. Baba,
gCMOS photonic crystal and slow lighth, SPIE Photonics West, San Francisco, no.
7943-10, 2011.
107.T. Baba,
gNano-slot photonic crystal nanolaser and its bio-sensing applicationsh,
German-Japanese Scientific-Technical Workshop on Quantum Dot and
Nano-engineered Semiconductor Lasers and Nanoanalytics,
Tokyo, no. L8, 2011
108.T. Baba,
gPhotonic crystal devices fabricated by using CMOS-compatible processh, OFC IME
Forum on Silicon Photonics, Los Angeles, no. 5, 2011.
109.T. Baba,
gPhotonic crystal and related devices fabricated by CMOS-compatible processh,
IEEE Int. Conf. Transparent Opt. Networks, Stockholm, no. ESPC I-1, 2011.
110.T. Baba, S.
Kita, H. Abe, S. Hachuda, M. Narimatsu, S. Otsuka and K. Nozaki, gPhotonic
crystal nanolasers with nanoslot structure for
sensing applicationsh, SPIE Optics and Photonics, San Diego, no. 8095-30, 2011.
111.T. Baba,
"Photonic nanostructure devices", IEEE Photonics Society LA Chapter
Seminar Series, Los Angeles, no. 1, 2011.
112.T. Baba,
gPhotonic crystal devices fabricated by CMOS compatible processh, Int. Conf.
Solid State Dev. Mat., Nagoya, no. I-2-1, 2011.
113.T. Baba,
gSlow light and bio-sensing with photonic crystalsh, IEEE Photonics Soc. Annual
Meet., Virginia, no. ThR-1, 2011.
114.T. Baba,
"Recent progress in on-chip slow light devices", SPIE Photonics West,
San Francisco, no. 8273-45, 2012.
115.T. Baba,
gAdvancement in photonic crystal slow light devices and silicon photonics
integrated circuitsh, Int. Sympo. Photonic and
Electromagnetic Crystal Structures, Santa Fe, no. 3B-3, 2012.
116.T. Baba,
gPhotonic crystal nanoslot nanolaser for
super-sensitivity bio-sensingh, IEEE Int. Conf. Transparent Opt. Networks,
Coventry, no. We.A6.4, 2012.
117.T. Baba,
gPhotonic nanostructure Tx/Rx devices for advanced optical networksh, IEEE
Group IV Photonics, San Diego, no. ThC6, 2012.
118.T. Baba,
"Photonic crystals in Si photonics and bio-photonics", IUMRS-Conf.
Electron. Mat., Yokohama, no. B-9-I25-008, 2012.
119.T. Baba,
gPhotonic crystal nanolasers for super-sensitivity bio-sensing applicationsh,
Int. Semicon. Laser Conf. Satellite Sympo., Yokohama, no. E-3, 2012.
120.T. Baba and
N. Ishikura, "Nanostructured silicon photonics devices fabricated by
CMO-compatible process", Photon. Global Conf., Singapore, no. C12a740,
2012.
121.T. Baba,
gSlow light devices in Si photonicsh, Int. Conf. Si Photonics and Satellite
Schooling on Si Photonics, Tokyo, no. 2-1, 2013.
122.T. Baba and
H. C. Nguyen, gCompact optical modulators in Si photonic crystalsh, SPIE
Photonics West, San Francisco, no. 8630-11, 2013.
123.T. Baba,
gCMOS-process-compatible photonic crystal slow light devicesh, SPIE Photonics
West, San Francisco, no. 8636-32, 2013.
124.H. C. Nguyen,
S. Hashimoto, M. Shinkawa and T. Baba, gCompact and fast photonic crystal
silicon optical modulatorsh, Conf. Laser and Electro-Optics, San Francisco, no.
CTu3F.1, 2013.
125.H. C. Nguyen,
N. Yazawa, S. Hashimoto and T. Baba, gAthermal
sub-100 mm Si photonic crystal optical modulatorh, Conf. Laser &
Electro-Opt. Pacific Rim and Optoelectronic & Commun.
Conf. / Photonics Switching, Kyoto, no. WM1-2, 2013.
126.T. Baba and
H. C. Nguyen, gSlow light optical modulatorsh, OSA Integrated Photon. Res.
Conf., Puerto Rico, no. IW4A-1, 2013.
127.T. Baba, N.
Ishikura and K. Kondo, gSlow light tuning in photonic crystalsh, SPIE Optics
and Photonics Congress, San Diego, no. 8808-46, 2013.
128.T. Baba,
"Advanced Si photonics with photonic nanostructures", IEEE Int. Conf.
Photon., Seattle, no. S1-1, 2013.
129.T. Baba,
gPhotonic crystal modulators and related slow light devices in Si photonicsh,
OSA FiO/LS integrated photonics, Orlando, 2013.
130.T. Baba,
gPhotonic crystal nanolasers for sensing applicationsh, OSA FiO/LS
integrated photonics, Orlando, 2013.
131.T. Baba,
gPhotonic crystal technologies for practical applicationsh, Special Seminar at
Harvard Univ., Boston, 2013.
132.T. Baba,
"Photonic integrated circuits with slow light", SPIE Photonics West,
San Francisco, no. 8998-9, 2014.
133.T. Baba,
"Photonic crystal nanolaser biosensors", Int. Workshop Fab. Appl. Microstructured Opt. Dev., Yokohama, no. 10, 2014.
134.T. Baba,
"Nanolaser and slow-light devices based on photonic crystals"CKavli Futures Symposium: Nanomaterials Science
in Asian Perspective, Seoul, 2014.
135.T. Baba and
K. Kondo, "Dynamic control of slow light pulses in photonic crystal
waveguides", IEEE Int. Conf. Transparent Opt. Networks, Austria, 2014.
136.T. Baba and
Y. Terada, gSlow light modulatorsh, SPIE Photonics West, San Francisco, no.
9367-16, 2015.
137.T. Baba and
K. Kondo, gCo-propagating slow light pulse systemsh, SPIE Photonics West, San
Francisco, no. 9378-11, 2015.
138.T. Baba and
Y. Terada, gHigh-speed and compact photonic crystal optical modulatorsh, SPIE
Optics and Optoelectronics, Prague, no. 9516-13, 2015.
139.T. Baba,
gPhotonic crystal integrated opticsh, EMN Meeting on Optoelectronics, Beijing,
no. B01, 2015.
140.T. Baba, K.
Watanabe and Y. Kishi, gPhotonic crystal nanolaser bio-sensors for detecting
environmental index and surface chargesh, IEEE Int. Conf. Transparent Opt.
Networks, Budapest, no. Mo.B6.1, 2015.
141.T. Baba,
gPhotonic crystal nanolasers for bio/medical applicationsh, Int.
Nano-Optoelectronics Workshop (iNOW), Tokyo, no.
ThA3, 2015.
142.T. Baba,
gBio-sensing applications of photonic crystal nanolasersh, OSA Adv.
Optoelectronics & Micro-/nano-Electronics, Hangzhou, 2015.
143.T. Baba, K.
Kondo, "Recent progress in photonic crystal slow light devices", SPIE
Photonics West, San Francisco, no. 9763-45, 2016.
144.T. Baba,
gPhotonic crystal nanolaser sensors for bio and medical applicationsh, Annual
World Cong. Smart Mat., Singapore, no. 403-2, 2016.
145.T. Baba,
gNanolaser biosensorsh, Int. Sympo. Adv. Plasma Sci.
Appl. Nitrides and Nanomat., Nagoya, no. 09aE01,
2016.
146.T. Baba,
gPhotonic crystal nanolasers and its application to bio-sensingh, Int. Conf.
Indium Phosphide & Related Mat., Toyama, no. TuB4-1, 2016.
147.T. Baba,
gNanolasers and their bio-sensing applicationsh, Optoelectronics Commun. Conf. & Photon. Switch., Niigata, no. WS-3,
2016.
148.T. Baba, gSlow
light devices in silicon photonicsh, Optoelectronics Commun.
Conf. & Photon. Switch., Niigata, 2016.
149.T. Baba,
gPractical applications of photonic bandgap devicesh, Int. Workshop Photon.
Electron. Crystal Structures, York, no. 3, 2016.
150.T. Baba,
gOn-chip auto-correlator using counter propagating slow light in photonic
crystal waveguide with TPA-PD arrayh, IEEE Int. Conf. Transparent Opt.
Networks, Girona, no. Mo.D6.1, 2017.
151.T. Baba and
K. Kondo, gCo- and counter-propagating slow light and their applicationsh, Int.
Conf. Metamaterials, Photonic Crystals and Plasmonics,
Seoul, no. 4A38-6, 2017.
152.T. Baba, Y.
Terada, Y. Hinakura, K. Hojo and H. Ito, gRecent progress in slow light
modulators,h Advanced Electromagnetics Sympo., Seoul,
no. 1A2-1, 2017.
153.T. Baba and
K. Kondo, gLine beam scanner using slow-light waveguides in Si photonicsh, Int.
Conf. Solid-State Devices and Materials, Sendai, no. H-8-04, 2017.
154.T. Baba,
gPhotonic crystal nanolaser biosensors,h SPIE Photonics West, San Francisco,
no. 10540-12, 2018 (Keynote).
155.T. Baba,
gWide steering of sharp beam from photonic crystal slow light waveguide,h SPIE
Photonics West, San Francisco, no. 10548-1, 2018.
156.H. Ito, T.
Tatebe, H. Abe and T. Baba, "WDM Si Photonic crystal beam scanner for
high-throughput parallel 3D sensing", Conf. Laser and Electro-Opt., San
Jose, no. SM2B.5, 2018.
157.T. Baba,
gNanophotonic lasers and their potential bio-applicationsh, Gordon Res. Conf. -
Lasers in Micro, Nano and Bio Systems, Waterville Valley, no. Tu5, 2018.
158.T. Baba,
gPhotonic crystal devices for LiDAR and biosensing applicationsh, Int. Conf.
Photo-Excited Process and Applications, Vilnius, no.TU-PL-1, 2018. (Plenary)
159.T. Baba, gSi
photonics PIC for LiDARh, Integrated Photon. Sys. Roadmap Int., Tokyo, no. 4,
2019 (Keynote).
160.T. Baba,
gIontronic sensing using photonic crystal nanolasersh, SPIE Photonics West, San
Francisco, no. 10927-62, 2019.
161.T. Baba,
gToward LiDAR using Si photonics and slow lighth, SPIE Photonics West, San
Francisco, no. 10934-32, 2019.
162.T. Baba,
gPhotonic crystal devices for sensingh, Conf. Laser and Electro-Optics, San
Jose, no. SW3J.1, 2019 (Tutorial).
163.T. Baba,
gPhotonic crystal technology for datacom and LiDAR applicationsh,
Optoelectronic and Commun. Conf., Fukuoka, no.
TuD3-1, 2019 (Tutorial).
164.T. Baba,
gDevelopment of non-mechanical beam steering and LiDAR based on photonic
crystal and Si photonicsh, IEEE Int. Conf. Transparent Opt. Networks, Angers,
no. Th.A6-2, 2019.
165.T. Baba, gSi
photonic crystal beam steering devicesh, IEEE Int. Conf. Group IV Photon.,
Singapore, no. FA6, 2019.
166.T. Baba,
gLiDAR: a key to AI-mobileh, Micro-Optic Conf., Toyama, no. SS-2, 2019
(Tutorial).
167.T. Baba, H.
Ito, H. Abe, T. Tamanuki, Y. Hinakura, R. Tetsuya, J. Maeda, M. Kamata, R.
Kurahashi and R. Shiratori, gSi PIC based on photonic crystal for LiDAR
applicationh, Opt. Fiber Commun. Conf., San Diego,
no. M4H.1, 2020.
168.T. Baba,
gDevelopment of Si photonics LiDAR based on photonic crystal slow-light
waveguidesh, ST Distinguished Lecturer Meet., On-line, 2020.
169.T. Baba, T.
Tamanuki and H. Ito, gWide 2D optical beam steering in Si photonics only with
thermo-optic effecth, Optoelectronic and Commun.
Conf., On-line, 2020.
170.T. Baba,
gDevelopment of photonic nanostructure devicesh, Quantum- & Nano-Photonics
Seminar Series at KAIST, 2021.
171.T. Baba, gPhofonic crystal devices for sensing --- focusing on LiDAR
applicationsh, Conf. Laser and Electro-Opt. Europe, Munich, no. CK.5-1, 2021
(Tutorial).
172.T. Baba,
gPhotonic integration based on Si photonics and photonic crystalsh,
Optoelectronic and Commun. Conf., Hong Kong, no.
M3D.1, 2021.
173.T. Baba,
gNon-mechanical beam steering and LiDAR application using Si photonics and slow
lighth, METANANO, Georgia, 2021 (Keynote).
174.T. Baba,
gDevelopment of on-chip LiDAR based on slow lighth, Int. Semicon.
Laser Conf., Potsdam, no. SuP2.5, 2021.
175.T. Baba,
gMicro- and nano-scale semiconductor lasersh, Int. Semicon.
Laser Conf., Potsdam, 2021 (Plenary).
176.T. Baba,
gIontronic bio-/chemical sensing using photonic crystal nanolasersh, Int.
Workshop Microcavities & Their Appl., Hong Kong, 2022.
177.T. Baba, gOn-chip FMCW LiDAR with slow light grating beam
scannerh, Int. Conf. Nano-Photonics and Nano-Optoelectronics, Yokohama, 2022
(Keynote).
178.R. Nakamura, T. Nakama,
A. Balčytis, T. Ozawa, Y. Ota, S. Iwamoto, H. Ito and
T. Baba, gTopological modes observed in Si photonics SSH integrated circuith,
Conf. Laser and Electro-Opt. Pacific Rim, Sapporo, no. CThA8D-02, 2022.
179.T. Baba, gFMCW LiDAR
incorporating slow light grating beam scannersh, European Conf. Opt. Commun., Basel, no. Th1F.1, 2022 (Keynote).
180.T. Baba, gChallenges
toward Si photonics solid-state FMCW LiDARh, Int. Conf. Expo, Lasers, Optics
& Photonics, Valencia, no. 15, 2022 (Plenary Talk).
181.S. Suyama and T. Baba,
gEfficient SLG optical beam scanner and 4D LiDAR actionh, Int. Conf. Expo,
Lasers, Optics & Photonics, Valencia, no. 24, 2022.
182.T. Nakama, R. Nakamura,
A. Balčytis, T. Ozawa, Y. Ota, S. Iwamoto, H. Ito and
T. Baba, gSSH topological photonic integrated circuit in Si photonicsh, Int.
Conf. Expo, Lasers, Optics & Photonics, Valencia, no. 25, 2022.
183.S. Hachuda and T. Baba,
gPhotonic crystal nanolasers and high-performance biosensingh, Int. Conf. Expo,
Lasers, Optics & Photonics, Valencia, no. 27, 2022.
184.T. Baba,
gSolid state LiDARh, Opt. Fiber Conf., San Diego, no. M2C.4, 2023 (Tutorial).
185.T. Baba,
gSolid-state LiDAR equipped with photonic crystal beam scannerh, Int. Sympo. Photonic and Electromagnetic Crystal Structures,
Tokyo, no. 29-A-01, 2023.
186.T. Baba, gSi
photonics FMCW LiDAR with solid-state beam scannerh, Optoelectronic and Commun. Conf., Shanghai, no. OECC2023-0320-91, 2023
187.T. Baba,
gDevelopment of on-chip LiDAR with Si photonics platformh, Asia-Europe Silicon
Photonics Symposium and Course, Zhejiang, no. 11, 2023.
188.T. Baba,
gSilicon photonics solid-state FMCW LiDARh, AMF Silicon Photonics Summit,
Tokyo, no. 4, 2023.
189.T. Baba,
gOn-chip FMCW LiDAR with Si photonics and slow light gratingh, Asia Pacific
Laser Symposium, Hakodate, no. OP-02, 2023.
190.T. Baba,
gSolid-state FMCW LiDAR in Si photonicsh, Int. Sympo.
Imaging, Sensing, and Opt. Memoryh, Takamatsu, no. Mo-G-02, 2023.
191.T. Baba,
gSilicon photonics solid-state LiDAR with slow-light grating beam scannerh,
Int. Conf. Opt. Photon. Lasers, Hiroshima, no. 7, 2023. (Keynote)
192.T. Baba,
gChallenges toward Si photonics solid-state LiDARh, Int. Conf. Adv. Mat. Dev.,
Jeju, no. Plenary-11, 2023 (Plenary).
193.T. Baba,
gOn-chip LiDAR sensor with slow-light scanner and swept laser sourceh, SPIE
Photonics West, San Francisco, no. 12912-60, 2024.
194.T. Baba, gNonmechanical
slow-light grating scanner loaded Si photonics FMCW LiDARh, IEEE Int. Conf.
Transparent Opt. Networks, Bari, 2024.
195.T. Baba and T. Tamanuki,
gOn-chip LiDAR with slow-light beam scanner and wavelength-swept sourceh, Conf.
Laser and Electro-Optics Pacific Rim, Incheon, 2024.
Šw‰ï‘S‘‘å‰ïµ‘Òu‰‰
1. ”nêr•F, ’r“c[‹MC_àV®‹v, gGaInAsP/InP 2ŽŸŒ³”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»h, H‹G“dŽqî•ñ’ÊMŠw‰ï‘S‘‘å‰ï, no. SC-4,
1997.
2. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Þ—¿h, “d‹CŠÖŒWŠw‰ï“ŒŠCŽx•”˜A‡‘å‰ïuŒõƒGƒŒƒNƒgƒƒjƒNƒX‚É‚¨‚¯‚éŋ߂̘b‘èvƒVƒ“ƒ|ƒWƒEƒ€, 2000.
3. ”nêr•F, g”÷¬ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ¡Œã‚Ì“W–]h, ƒŒ[ƒUŠw‰ïŠwpu‰‰‰ï, no. F-3, 2001.
4. ”nêr•F, g“±”gA”Œõ§ŒäF‰½‚ªŒ©‚¦‚Ä‚«‚½‚©Hh, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. SC-4, 2001.
5. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éŒõ“`”ÀE”Œõ§Œäh, “ú–{•¨—Šw‰ïH‹Gu‰‰‰ï, no. 19a-RF-7, 2001.
6. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒX‚ÌV‚µ‚¢ŽŽ‚Ýh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒAƒeƒB‘å‰ï, no. SC-1-11, 2003.
7. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‰ž—p‚ÌŒ»ó‚Æ“W–]h, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 28a-ZM-1, 2004.
8. ”nêr•F, gƒX[ƒp[ƒvƒŠƒYƒ€‚̉ž—p‚Æ«—ˆ“W–]h, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 28p-ZM-6, 2004.
9. ”nêr•F, gSi×ü‚É‚æ‚é1.5mm‘ÑŒõ“±”g˜Hh, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 29p-ZZ-6, 2004.
10. ”nêr•F, gŽŸ¢‘ãŒõ’ÊM‚ւ̃tƒHƒgƒjƒbƒNŒ‹»‹Zph, t‹G‰ž—p•¨—Šw‰ïu‰‰‰ï, no. 30a-ZH-4, 2005.
11. ”nêr•F, X‘å—S,
gƒtƒHƒgƒjƒbƒNŒ‹»Œõƒoƒbƒtƒ@[Eƒƒ‚ƒŠ[‚̉”\«h, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 8a-ZE-4, 2005.
12.
”nêr•F, gƒVƒŠƒRƒ“”÷¬“±”g˜HŒõƒfƒoƒCƒXh,‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 6p-C-5, 2007.
13.
”nêr•F, —L“c—^Šó, gƒtƒ@ƒEƒ“ƒhƒŠ[ƒT[ƒrƒX‚ÌŒ¤‹†ŠJ”‚ւ̃Cƒ“ƒpƒNƒg‚ÆŒ»ó‚̉ۑèh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-2-14, 2009.
14.
”nêr•F, gƒiƒm\‘¢ƒtƒHƒgƒjƒNƒXƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2011
15.
H. C. Nguyen, ’†–ì—T–ç,
Vì‹G, Αq“¿—m,
”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚‘¬Œõ•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2011.
16.
”nêr•F, –kãÄ‘¾, ‰H’†“cËŽi,
‘å’ËãÄ‘¾, ˆ¢•”hŽm,
¬¼“¹³, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-1-10, 2011.
17.
—é–ØŒbŽ¡˜Y, –ΘC«“T, ”nêr•F,
gƒJƒ‹ƒRƒQƒiƒCƒhƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜HƒXƒ[ƒ‰ƒCƒgƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, 2011 .
18.
–kãÄ‘¾, ‘å’ËãÄ‘¾, ‰““¡’B˜Y,
¼“‡Šì–¾, ŽOàVO–¾,
”nêr•F, gƒiƒmƒXƒƒbƒgƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚é’´‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 25p-KA-1, 2011.
19.
H. C. Nguyen, ’†–ì—T–ç,
Vì‹G, Αq“¿—m,
”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»“±”g˜H‚‘¬Œõ•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, no. C-3-51, 2011.
20.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒfƒoƒCƒX»ì‚É‚¨‚¯‚éƒVƒŠƒRƒ“ƒtƒ@ƒu‚Ì—˜—ph, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-1-7, 2012.
21.
Αq“¿—m, ”nêr•F, ‘qŽ‰hˆê,
”[•x‰ë–ç, gƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg“±”g˜H‚É‚æ‚é‚•ª‰ð”\‰Â•Ï’x‰„‚Æ‚»‚̉ž—ph, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. C3-75, 2012.
22.
H. C. Nguyen, Vì‹G,
Αq“¿—m, ”nêr•F,
g100 mm’·ˆÈ‰º‚ÅL‘шæ‚È10
Gb/s SiƒtƒHƒgƒjƒbƒNŒ‹»MZIŒ^Œõ•Ï’²Šíh, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 13a-C5-1, 2012.
23.
”nêr•F, ‰H’†“cËŽi, “n粌h‰î,
ˆé–ìr¬, ‘å’ËãÄ‘¾,
–kãÄ‘¾, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚é‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. C-4-22, 2013.
24.
Ž›“c—z—S, —‘q—z‰î, –kžŠŒbŽq,
Œš•”’m‹I, ”nêr•F,
gL‚¢“®ìƒXƒyƒNƒgƒ‹‚ð—L‚·‚鬌^OOKEQPSKƒtƒHƒgƒjƒbƒNŒ‹»•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. C-4-19,
2016.
25.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚̃oƒCƒIEˆã—Éž—ph, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-3-1, 2016.
26.
Ž›“c—z—SC—‘q—z‰îC–kžŠŒbŽqCŒš•”’m‹IC”nêr•F, gƒXƒ[ƒ‰ƒCƒg‚ð—˜—p‚µ‚½¬Œ^SiƒtƒHƒgƒjƒbƒNŒ‹»•Ï’²Šíh, ƒŒ[ƒU[Šw‰ï, 2017.
27.
T. Baba, gPhotonic crystal nanolaser
biosensorsh, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no.
16p-C301-1, 2016.
28.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ƃtƒHƒgƒjƒbƒNŒ‹»h, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 16p-F204-6, 2017.
29.
”nêr•F, “n•”H, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚̶‘̃Zƒ“ƒVƒ“ƒO‰ž—p,h ƒŒ[ƒU[Šw‰ï,
no. S6-7, 2018.
30.
”nêr•F, gƒXƒ[ƒ‰ƒCƒg‚ð—˜—p‚·‚éƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXLiDAR‚ÌŠJ”h, “dŽqî•ñ’ÊMŠw‰ï‘‡‘å‰ï, no. CI-2-4, 2018.
31.
”nêr•F, gƒXƒLƒƒƒi: Si‚ÅŒõ‚𑀂éh,
‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 18p-141-4, 2018.
32.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒTh, ‰ž—p•¨—Šw‰ïH‹Gu‰‰‰ï, no. 20p-232-1, 2018.
33.
”nêr•F, ˆ¢•”hŽm, ˆÉ“¡Š°”V,
gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXLiDAR‚ÌŠJ”h, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2019.
Šw‰ï“™Œ¤‹†‰ïµ‘Òu‰‰
1. ”nêr•F,
gMicrocavity semiconductor lasersh, “d‹CŠw‰ïŽŸ¢‘ãŒõƒfƒoƒCƒXŒ¤‹†‰ï,
no. 2, 1996.
2. ”nêr•F,
g‹ÉŒÀ”÷¬Œõ‘fŽq‚ƃ}ƒCƒNƒƒ}ƒV[ƒ“‚ð—p‚¢‚½Žü•Ó‹Zph,
_“Þ쌧ŽY‹Æ‹Zp‘‡Œ¤‹†ŠŽYŠwŒöŒð—¬Œ¤‹†”•\‰ï,
A, 1997.
3. ”nêr•F,
g”÷¬”¼“±‘Ì”Œõ‘fŽq‚ÆŽü•Ó‹Zph,
“ú–{ŽžŒvŠw‰ïŒ¤‹†‰ï,
no. 1, 1998.
4. ”nêr•F,
g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»h,
‰ž—pŽ¥‹CŠw‰ïŒõƒXƒsƒjƒNƒXŒ¤‹†‰ïuƒtƒHƒgƒjƒbƒNÞ—¿‚ÆŽ¥‹CŒõŠw‚Ö‚Ì“WŠJv,
no. 2C1998.
5. ”nêr•F,
h”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚ÌŒ»ó‚Æ«—ˆh,
“ú–{H‹Æ‹ZpU‹»‹¦‰ïƒiƒm\‘¢•¨Ž¿Œ¤‹†‰ï,
no. 1, 1998.
6. ”nêr•F,
g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚Ì–¢—ˆ‘œh,
ƒ}ƒCƒNƒ‰»Šw§˜b‰ï,
no. 2, 1998.
7. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»h,
V‰»Šw”“W‹¦‰ïƒNƒ‰ƒXƒ^[E’´”÷—±Žq•ª‰È‰ïu‰‰‰ï,
no. 2, 1998.
8. ”nêr•FC•yŽm“c½”VCâˆä“Ä,
ŽR“c‘׎j,
_Œ´_•½,
gGaInAsP’´”÷¬ƒfƒBƒXƒNƒŒ[ƒU‚Ì“d—¬“®ì“Á«‚Æ‚»‚̉ž—ph, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«Œ¤‹†‰ï,
no. 6, 1999.
9. ”nêr•F,
g‹ÉŒÀ”÷¬”¼“±‘ÌŒõ‘fŽq‚Æ‚–§“xŒõ‰ñ˜HhCŒõŽY‹Æ‹ZpU‹»‹¦‰ïŽŸ¢‘ãŒõƒiƒmƒƒ‚ƒŠ„i‹@\Œ¤‹†‰ï,
no. 1, 1999.
10. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»‚ð—˜—p‚µ‚½ŒõWÏ‹Zph,
ŒõŽY‹Æ‹ZpU‹»‹¦‰ïOEICEŒõƒCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“‹Zp§’k‰ï,
1999.
11. ”nêr•F,
g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»”Œõ‘fŽq‚ÆŒõ”g‰ñ˜Hh,
ŒõŽY‹Æ‹ZpU‹»‹¦‰ï‘æ2‰ñuƒtƒHƒgƒjƒbƒNŒ‹»‚Ìi“W‚ÆŽY‹Æ‰ž—p‚̉”\«vƒtƒH[ƒ‰ƒ€,
no. 2-2, 1999.
12. ”nêr•F,
[’J®ŽuC•Ä‘q~,
gƒtƒHƒgƒjƒbƒNŒ‹»Œõ”g‰ñ˜Hh,
“dŽqî•ñ’ÊMŠw‰ïŒõWσGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï,
OPE99-1, pp. 1-6, 1999.
13. ”nêr•F,
g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚Ì“®Œü‚Ɖž—ph,
“dŽqî•ñ’ÊMŠw‰ïWÏŒõƒfƒoƒCƒX‹ZpŒ¤‹†‰ï,
no. R-3, 1999.
14. ”nêr•F,
h”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚ÌŒ»ó‚Æ«—ˆh,
“ú–{ŠwpU‹»‰ïu”¼“±‘̂̉ÁH‚Ɖž—pvŒ¤‹†‰ïCno.
2, 1999.
15. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»Œõ‘fŽqh,
“ú–{‰t»Šw‰ïu‰t»ƒtƒHƒgƒjƒNƒXEŒõƒfƒoƒCƒXŒ¤‹†ƒtƒH[ƒ‰ƒ€v,
no. 1, 1999.
16. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»Œõ‹Zph,
‘ˆî“c‘åŠwƒ}ƒCƒNƒ‹ZpŒ¤‹†‰ï,
no. 1, 1999.
17. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»‚ð—p‚¢‚½“±”g˜H»ìhC“ú–{ŒõŠw‰ïuŒõ“±”g˜H‚ÆŒõ’ÊM|Šî‘bE‰ž—pE“W–]|vŒ¤‹†‰ï,
no. 8, 1999.
18. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃiƒmƒtƒHƒgƒjƒNƒXh,
¸–§HŠw‰ï’´¸–§‰ÁHê–匤‹†‰ïuƒtƒHƒgƒjƒbƒNŒ‹»“ÁWv,
no. 2, 2000.
19. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»‚Ì¢ŠEh,
‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«Œ¤‹†‰ï,
no. 1, 2000.
20. ”nêr•F,
–ì“ci,
¬â‰p’j,
gƒtƒHƒgƒjƒbƒNŒ‹»‹Zpƒ[ƒhƒ}ƒbƒvh,
‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«Œ¤‹†‰ï,
no. 7, 2000.
21. ”nêr•F,
g”÷¬ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ¡Œã‚Ì“W–]h,
ƒŒ[ƒUŠw‰ïŠwpu‰‰‰ï,
no. F-3-2, 2001.
22. ”nêr•F,
gƒtƒHƒgƒjƒbƒNƒŒ[ƒUh,
ŒõŽY‹Æ‹ZpU‹»‹¦‰ïŒõÞ—¿E‰ž—p‹ZpŒ¤‹†‰ï,
no.2, 2001.
23. ”nêr•F,
•yŽm“c½”V,
âˆä“Ä,
[’J®Žu,
ŽsìO”V,
–Ζؕà,
gƒfƒBƒXƒNŒ^ŒõWÏ‘fŽqh,
“dŽqî•ñ’ÊMŠw‰ïŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï,
vol. 101, no. 92/OPE2001-1, pp. 1-6, 2001.
24. ”nêr•F,
gƒtƒHƒgƒjƒbƒNŒ‹»‚Ì“WŠJh,
ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ïƒtƒHƒgƒjƒbƒNƒeƒNƒmƒƒW[ƒVƒ“ƒ|ƒWƒEƒ€,
no. 6, 2001.
25.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÆŠÖ˜A‹Zph,
“ú–{ŠwpU‹»‰ïŒõƒGƒŒƒNƒgƒƒjƒNƒX‘æ130ˆÏˆõ‰ï,
no. 4, 2001.
26.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚‹üÜ—¦·”÷¬ŒõŠw‘fŽqh,
ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒiƒmƒtƒHƒgƒjƒNƒX§’k‰ï,
no. 3, 2001.
27.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»’†‚ÌŒõ“`”Àh,
‰ž—p•¨—Šw‰ïŠÖ¼Žx•”ƒiƒmƒtƒHƒgƒjƒNƒXƒZƒ~ƒi[,
2001.
28.
”nêr•F, g‚¸“xƒŠƒ\ƒOƒ‰ƒtƒB‹Zp‚ð—p‚¢‚½ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ƒfƒoƒCƒXh,
“ú–{H‹Æ‹ZpU‹»‹¦‰ïŽŸ¢‘ナƒ\ƒOƒ‰ƒtƒB‹ZpŒ¤‹†‰ï,
2001.
29.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚¨‚¯‚éŠeŽíŒõ“`”À‚ƃfƒoƒCƒX‰ž—ph,
ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNŒ‹»ƒVƒ“ƒ|ƒWƒEƒ€uŠî‘bŠî”ÕŒ¤‹†‚©‚çŽY‹Æ‰ž—p‚Öv,
no. 3, 2002.
30.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÆŒõ’ÊMƒfƒoƒCƒX‚ւ̉ž—ph,
ƒŒ[ƒUŠw‰ïƒŒ[ƒUƒGƒLƒXƒ|2002“Á•ÊƒZƒ~ƒi[,
no. O-2, 2002.
31.
”nêr•F, ˆä‰º‹žŽ¡, –Ζؕà,
˜aò“N˜Y, gICPƒGƒbƒ`ƒ“ƒO‹Zp‚ƃtƒHƒgƒjƒbƒNŒ‹»h, ‰ž—p“dŽq•¨«Œ¤‹†‰ï, no. 3, 2002.
32. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œ¤‹†‚ÌŒ»ó‚Æ«—ˆ“W–]h, “Á‹–’¡‹ZpŒ¤CƒZƒ~ƒi[, 2002.
33. ”nêr•F, hƒtƒHƒgƒjƒbƒNŒ‹»‚ƃ}ƒCƒNƒƒŒ[ƒUh, _“Þì‰ÈŠw‹ZpƒAƒJƒfƒ~[ƒtƒHƒgƒjƒNƒX‚ÌŠî‘b‚ÆV“WŠJƒR[ƒX, 2003. .
34. ”nêr•F, g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»‚Ì•¨—‚ÆŒõƒfƒoƒCƒX‰ž—p‹y‚ÑSiŒõ“±”g˜Hh,
‘ˆî“c‘åƒiƒmƒeƒNƒtƒH[ƒ‰ƒ€ƒ}ƒCƒNƒEƒiƒmƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 1,
2003.
35. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚郌[ƒU”U‚ÆŒõ§Œäh, “dŽqî•ñ’ÊMŠw‰ï’´‚‘¬ƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 3, 2003.
36. ”nêr•F, gƒiƒmƒeƒNƒmƒƒW[‚ð—p‚¢‚½ƒtƒHƒgƒjƒbƒNŒ‹»ì»h, ‚•ªŽqŠw‰ïƒiƒm‚•ªŽqƒ[ƒNƒVƒ‡ƒbƒv, no. 2, 2003.
37. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŒ´—‚Ɖž—ph, “dŽqî•ñ’ÊMŠw‰ïƒAƒ“ƒeƒiE“`”ÀŒ¤‹†‰ï, no. 13,
2003.
38. ”nêr•F, gPC‚ÆHIC‚Ì‘_‚¢‚Ʊ‚Ý•ª‚¯h, “dŽqî•ñ’ÊMŠw‰ïWÏŒõƒfƒoƒCƒX‹ZpŒ¤‹†‰ï, no. 11, 2003.
39. ”nêr•F, [àV—³•F,
gSi×üŒõ“±”g˜H‚ÌŒ»ó‚Æ«—ˆ“W–]h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïOEICEŒõƒCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“‹Zp§’k‰ï, no. 1, 2003.
40. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ×üŒõ“±”g˜H‚ÌŒ¤‹†“®Œü‚Æ“W–]h, “dŽqî•ñ‹ZpŽY‹Æ‹¦‰ïƒtƒHƒgƒjƒbƒNƒlƒbƒgƒ[ƒNƒfƒoƒCƒX‹Zpê–åˆÏˆõ‰ï, no. 1, 2003.
41. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃ}ƒCƒNƒƒŒ[ƒU‚Ì¢ŠEh, iàj“Œ“d‹L”O‰ÈŠw‹ZpŒ¤‹†Š‹L”Ou‰‰‰ï, no. 1, 2003.
42. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃiƒm\‘¢ƒtƒHƒgƒjƒNƒX‚Ì¢ŠEh, “dŽqî•ñ’ÊMŠw‰ï“Œ‹žŽx•”Šw¶‰ï, no. 2, 2003.
43. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h,
“ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï2004ƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, no. I-8, 2004.
44. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃtƒHƒgƒjƒbƒNƒiƒm\‘¢‚ÌV‚½‚ȃfƒoƒCƒX‰ž—ph, “dŽqî•ñ’ÊMŠw‰ïE“Œ‹žŽx•”uƒtƒHƒgƒjƒbƒNƒNƒŠƒXƒ^ƒ‹EŠî‘b‚©‚绕i‚Ü‚ÅvƒVƒ“ƒ|ƒWƒEƒ€, no. 5, 2004.
45. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚‹üÜ—¦·ŒõƒfƒoƒCƒXh, “Œ‹žH‹Æ‘åŠw¸Œ¤ƒZƒ~ƒi[, 2004.
46. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ŒõƒfƒoƒCƒXh, “Œ‹žH‹Æ‘åŠw¸Œ¤ƒVƒ“ƒ|ƒWƒEƒ€uƒtƒHƒgƒjƒbƒNƒlƒbƒgƒ[ƒNƒfƒoƒCƒX‚ÌV“WŠJ(3)v, no. 3, 2004.
47. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚̃fƒoƒCƒX‹Zp‚ւ̉ž—ph, “ú–{‘‡Œ¤‹†ŠƒiƒmƒfƒoƒCƒX‹Zp’²¸ˆÏˆõ‰ï, no. 1, 2004.
48. ”nêr•F, gŒõ”gƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“---ƒtƒHƒgƒjƒbƒNŒ‹»‚ð—á‚É‚µ‚Äh, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, 2004.
49. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃ}ƒCƒNƒƒŒ[ƒUh, _“Þì‰ÈŠw‹ZpƒAƒJƒfƒ~[uæ’[ƒtƒHƒgƒjƒNƒXvƒR[ƒX, 2004.
50. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒXh, “ú–{ŠwpU‹»‰ï‘æ130ˆÏˆõ‰ïŒ¤‹†‰ï, no. 2, 2004.
51. ”nêr•F, gŒõ”gƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“---ƒtƒHƒgƒjƒbƒNŒ‹»‚ð—á‚É‚µ‚Äh, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, no. 2-1, 2004.
52. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŠî‘bh, ˆ®ÉŽq‰ž—p•¨—ŠwuÀ, 2004.
53. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒX‚ÌŒ»ó‚Ɖۑèh, ƒtƒƒ“ƒeƒBƒAƒvƒƒZƒXŒ¤‹†‰ï, no. 2-1, 2004.
54. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒX‚ÌŒ»ó‚Æ«—ˆ“W–]h, ƒjƒ…[ƒKƒ‰ƒXƒtƒH[ƒ‰ƒ€§’k‰ï, 2004.
55. ”nêr•F, g”¼“±‘Ì”÷×\‘¢ƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚»‚̉ž—ph,ƒTƒ€ƒR”––Œ‹ZpƒZƒ~ƒi[, 2004.
56. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œ¤‹†‚Ɖž—p‚ÌÅV“®Œüh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒ}ƒ“ƒXƒŠ[ƒZƒ~ƒi[, 2004.
57. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚¨‚¯‚é’áŒQ‘¬“x‚Ì—˜—ph, —ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ïuƒtƒHƒgƒjƒbƒNŒ‹»‚Ì•¨—‚Ɖž—pv, no. 8, 2005.
58. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h,
“ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï2004ƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, no. I-8, 2005.
59. ”nêr•F, g‚±‚±‚Ü‚Åi‚ñ‚¾ƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒXŒ¤‹†h, ƒŒ[ƒUƒGƒLƒXƒ|2005,
no. I-1, 2005.
60. ”nêr•FC–ΖؕàC‘å–앶²C²X–ØN•ãC[àV’B•F, gƒVƒŠƒRƒ“×ü“±”g˜HŒõƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ïƒVƒŠƒRƒ“EƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. SIPH2004-18, 2005.
61. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»
– ‚»‚ÌŒ´—‚Æ«Ž¿ –h, _“Þì‰ÈŠw‹ZpƒAƒJƒfƒ~[uæ’[ƒtƒHƒgƒjƒNƒXvƒR[ƒX, 2005 .
62. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌÅ‹ß‚Ìi“Wh, “dŽqî•ñ’ÊMŠw‰ï’´‚‘¬ŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 2, 2005.
63. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œõƒoƒbƒtƒ@[‚̉”\«h, î•ñ’ÊMŒ¤‹†‹@\Œõƒoƒbƒtƒ@[ƒZƒ~ƒi[, 2005.
64. ”nêr•F, gHigh Index ContrastŒõ‹@”\ƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ïŒõ’ÊMƒVƒXƒeƒ€ƒVƒ“ƒ|ƒWƒEƒ€, µ‘Òu‰‰(3),
2005.
65. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg‚Ì“W–]‚ÆŒ»óh, —ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, pp. 26-27, 2006.
66. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h,
“ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï2006ƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, no. I-8, 2006.
67. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Œõ‰ñ˜H‚ÌŠî‘b‚Ɖž—ph, “ú–{ŒõŠw‰ï‘æ32‰ñ“~ŠúuK‰ï, no. 2-2, 2006.
68. ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒXŽÀ‘•h, YUVECŽÀ‘•‹ZpŒ¤‹†‰ï,
no. 2, 2006.
69. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»Fŋ߂̘b‘èh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 3,
2006.
70. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒXh, ƒŒ[ƒUƒGƒLƒXƒ|uƒŒƒ“ƒYÝŒvE»‘¢“W2006“Á•ÊƒZƒ~ƒi[v, no. S6-2, 2006.
71. ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢‚̃oƒ“ƒh‰ðÍ‚ÆFDTDŒvŽZh,
R-Soft—˜—pŽÒƒZƒ~ƒi[, no. 3,
2006.
72. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Ì‹‘å\‘¢•ªŽU‚Æ‚»‚̉ž—ph, ”÷¬ŒõŠwŒ¤‹†‰ï,
pp. 45-50, 2006.
73. ”nêr•F, X‘å—S,
‹v•Û«ì, ìèrŽj,
gƒtƒHƒgƒjƒbƒNŒ‹»’†‚̃Xƒ[ƒ‰ƒCƒgh, “dŽqî•ñ’ÊMŠw‰ï’´‚‘¬ŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 3, 2006.
74. ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒXh, ŒoÏŽY‹ÆÈuƒtƒHƒgƒjƒbƒNƒlƒbƒgƒ[ƒN‹Zp‚ÌŠJ”ƒvƒƒWƒFƒNƒgv•ñ‰ï, no. 2, 2006 (Šî’²u‰‰).
75.
”nêr•F, gƒVƒŠƒRƒ““±”g˜HŒõƒfƒoƒCƒXh, —ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 3, 2007.
76.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï2004ƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, no. 2-1, 2007.
77.
”nêr•F, gState-of-the-art photonic nanostructure
devicesh,uî•ñ’ÊM‹Zp‚ÉŠî‚–¢—ˆŽÐ‰ïŠî”Õ‘n¶vCOEƒVƒ“ƒ|ƒWƒEƒ€, 2007 (Šî’²u‰‰).
78.
”nêr•F, gƒVƒŠƒRƒ“”÷¬ŒõŠwƒfƒoƒCƒX‚ƃtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ŠwpU‹»‰ï”––Œ‘æ131ˆÏˆõ‰ïŒ¤‹†‰ï, no. 1, 2007.
79.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒX‚Ì¢ŠEh, ‘åã“d‹C’ÊM‘åŠwŠwpƒtƒƒ“ƒeƒBƒAuŠE–ʗ̈æV‹@”\Þ—¿‚ÌŒ¤‹†vƒVƒ“ƒ|ƒWƒEƒ€, no. 1, 2007
(Šî’²u‰‰).
80.
”nêr•F, gƒVƒŠƒRƒ“”÷¬ƒpƒbƒVƒuƒfƒoƒCƒX‚ÌŠî‘b‚Ɖž—ph, “dŽqî•ñ’ÊMŠw‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 2, 2007.
81.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “d‹CŠw‰ï‹@”\«—U“d‘Ì”––Œæ’[‹Zp’²¸ê–åˆÏˆõ‰ï, no. 4, 2007
82.
”nêr•F, gŒõ‚ƃVƒŠƒRƒ“ƒeƒNƒmƒƒW[
83.
”nêr•F, gƒzƒgƒjƒbƒNƒNƒŠƒXƒ^ƒ‹iPCj‚̉ž—p—˜—ph, ‰ÈŠw‹ZpU‹»‹@\˜ëáÕƒ[ƒNƒVƒ‡ƒbƒvu‰ÈŠw‹ZpƒV[ƒY‚ðŽY‹Æ‚ɂ‚Ȃ®‚½‚ß‚Ìæ’[Œv‘ªv, no. (3)-3, 2008.
84.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»h, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ïƒtƒHƒgƒjƒNƒX‹ZpŒ¤C‰ï ---æ’[Œõ‹Zp‚ÌŠî‘b‚Ɖž—p---, 2008.
85.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒgƒfƒoƒCƒX‚Ìi“Wh, “dŽqî•ñ’ÊMŠw‰ïWσfƒoƒCƒX‹ZpŒ¤‹†‰ï, 2008.
86.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹» --- 펯‚ð’´‚¦‚Ä
---h, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[u”÷¬ŒõŠw‚ÌŠî‘b‚Æ”“Wv, no. 10,
2008.
87.
”nêr•F, gƒVƒŠƒRƒ“ƒpƒbƒVƒuŒõƒfƒoƒCƒXh, JEITA“dŽqÞ—¿EƒfƒoƒCƒX‹Zpê–åˆÏˆõ‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zp•ª‰È‰ï, no. 1,
2008.
88.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»ó‚Æ¡Œã‚Ì“WŠJh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒX‰ž—p‹ZpŒ¤‹†‰ïuƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXEƒiƒmƒtƒHƒgƒjƒNƒXv, no. 5,
2008.
89.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ƒfƒoƒCƒXŒõƒfƒoƒCƒXh, ‚©‚킳‚« ƒTƒCƒGƒ“ƒX•ƒeƒNƒmƒƒW[ƒtƒH[ƒ‰ƒ€, no. 3,
2008.
90.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚Æ‚»‚̉ž—ph, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 2,
2009.
91.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg‹Zp‚Ìi“Wh, “ú–{ŠwpU‹»‰ï‘æ130ˆÏˆõ‰ï,
no. 3, 2009.
92.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg‹Zph, “ú–{ŠwpU‹»‰ï‘æ179ˆÏˆõ‰ïŒ¤‹†‰ï,
no. 2, 2009.
93.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 4,
2010.
94.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»óh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒuƒŒ[ƒNƒXƒ‹[‹Zpu‰‰‰ï, no. 2,
2010.
95.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚Æ’´‚Š´“xƒZƒ“ƒVƒ“ƒO‰ž—ph, ‰ÈŠw‹ZpU‹»‹@\ƒ[ƒNƒVƒ‡ƒbƒvu–³‹@”Œõ‘fŽq‚ð—p‚¢‚½‚‹@”\Æ–¾EŽŸ¢‘ヌ[ƒU‹Zpv, no. 2-2,
2010.
96.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX@`ŒõWÏ‚ÌV“WŠJ`h, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, no. 10, 2010.
97.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒXh, ƒTƒCƒGƒ“ƒXƒeƒNƒmƒtƒH[ƒ‰ƒ€, 2010.
98.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, ƒVƒŠƒRƒ“Þ—¿‚̉Ȋw‚Æ‹ZpƒtƒH[ƒ‰ƒ€, 2010.
99.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 4,
2010.
100.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÌŒ»óh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒuƒŒ[ƒNƒXƒ‹[‹Zpu‰‰‰ï, no. 2,
2010.
101.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚Æ’´‚Š´“xƒZƒ“ƒVƒ“ƒO‰ž—ph, ‰ÈŠw‹ZpU‹»‹@\ƒ[ƒNƒVƒ‡ƒbƒvu–³‹@”Œõ‘fŽq‚ð—p‚¢‚½‚‹@”\Æ–¾EŽŸ¢‘ヌ[ƒU‹Zpv, no. 2-2,
2010
102.
—é–ØŒbŽ¡˜Y, ”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒX‚ƃXƒ[ƒ‰ƒCƒgh, “ú–{Šwp‰ï‹cƒVƒ“ƒ|ƒWƒEƒ€uæ’[ƒtƒHƒgƒjƒNƒX‚Ì“W–]v, no. 13, 2010.
103.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX@`ŒõWÏ‚ÌV“WŠJ`h, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, no. 10, 2010.
104.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒXh, ƒTƒCƒGƒ“ƒXƒeƒNƒmƒtƒƒ“ƒeƒBƒAƒtƒH[ƒ‰ƒ€, no. 1, 2010.
105.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚Ìi“Wh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 1, 2010
106.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚É‚¨‚¯‚éŒõŠwƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“h, “ú–{ƒA[ƒ‹ƒ\ƒtƒg‰ž—pŽ–—áЉîƒZƒ~ƒi[, no. 6, 2010.
107.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹ZpEƒfƒoƒCƒX‚ÌŠT—vEŠJ”“®Œü‚Ɖž—p‹y‚Ñ¡Œã‚Ì“WŠJh, “ú–{‹Zpî•ñƒZƒ“ƒ^[ƒZƒ~ƒi[u‹}i“W‚·‚鎟¢‘ãƒCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“‚ÌŠJ”E‹Zp“®Œü‚Ɖž—pC¡Œã‚Ì“WŠJv, no. 1, 2010
108.
Αq“¿—m, Vì‹G, M•vŽjO,
‹ÊŠÑŠx³, H. C. Nguyen, ‘ì—Á, ’†–ì—T–ç,
”nêr•F, g‘å‹K–ÍWÏ‚ð‰Â”\‚Æ‚·‚éCMOSƒtƒHƒgƒjƒbƒNŒ‹»‚ÌŠJ”h, ‰ÈŠw‹ZpU‹»‹@\CRESTƒVƒ“ƒ|ƒWƒEƒ€,
2010.
109.
—é–ØŒbŽ¡˜Y, –ΘC«“T, Vì‹G,
Ö“¡—I“ñ, ”nêr•F,
g‚”ñüŒ`ƒJƒ‹ƒRƒQƒiƒCƒhƒtƒHƒgƒjƒbƒNŒ‹»h, ‰ÈŠw‹ZpU‹»‹@\CRESTƒVƒ“ƒ|ƒWƒEƒ€,
2010.
110.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒNƒX‚Ì‹Zp“®Œü‚Æ¡Œã‚Ì“WŠJh, ŒÃ‰Í“dHu‰‰‰ï, 2010.
111.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 2,
2011.
112.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõWσfƒoƒCƒX‚ÌV“WŠJh, ƒiƒmƒeƒN“Wæ’[ICTƒVƒ“ƒ|ƒWƒEƒ€,
no. 1, 2011.
113.
”nêr•F, gŽ©“]ŽÔ‚Æ“¯‚¶ƒXƒs[ƒh‚Å‘–‚éŒõ –ƒXƒ[ƒ‰ƒCƒg--h, “ú–{•¨—Šw‰ïŒöŠJuÀuŒõ‰ÈŠw‚ÌÅæ’[v, no. 2, 2011.
114.
”nêr•F (‰¡•l‘—§‘åŠw), gƒtƒHƒgƒjƒbƒN\‘¢‚ÌŒõŠwƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“---Šî‘b‚ÆŽÀÛh
“ú–{ƒA[ƒ‹ƒ\ƒtƒg‰ž—pŽ–—áЉîƒZƒ~ƒi[, no. 4, 2011
115.
”nêr•F, –kãÄ‘¾, ‰H’†“cËŽi,
‘å’ËãÄ‘¾, ˆ¢•”hŽm,
¬¼“¹³, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU---‹†‹É‚̃iƒmƒXƒƒbƒg\‘¢‚Æ‚»‚̉ž—ph, ‰ž—p•¨—Šw‰ït‹Gu‰‰‰ï, no. 26p-BN-8, 2011.
116.
”nêr•F, gƒiƒm\‘¢ƒtƒHƒgƒjƒNƒXƒfƒoƒCƒXh, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, no. C-3-22, 2011i‹L”Ou‰‰j
117.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ŒõƒfƒoƒCƒX‚Ìi“Wh, “dŽqî•ñ’ÊMŠw‰ïWÏŒõƒfƒoƒCƒX‚Ɖž—p‹ZpŒ¤‹†‰ï, no. 2-4, 2012.
118.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 2,
2012.
119.
”nêr•F, ƒOƒFƒ“ƒzƒ“C—é–ØŒbŽ¡˜YCÖ“¡—I“ñCΑq“¿—mCVì‹G, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢‚É‚æ‚éƒXƒ[ƒ‰ƒCƒg‚Æ‚»‚̉ž—ph, æ’[Œõ—ÊŽq‰ÈŠwƒAƒ‰ƒCƒAƒ“ƒXƒZƒ~ƒi[, no. 4, 2012.
120.
”nêr•F, gCMOSƒvƒƒZƒX‚É‚æ‚éƒiƒm\‘¢ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒfƒoƒCƒXh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ï‰ž—p‹ZpŒ¤‹†‰ï, no. 1, 2012.
121.
”nêr•F, gƒtƒHƒgƒjƒbƒNƒiƒm\‘¢`Œõ‚𑀂éƒNƒŠƒXƒ^ƒ‹`h, ‘æ48‰ñŽs‘ºŠwpÜŽóÜ‹L”Oæ’[‹Zpu‰‰‰ï, 2012.
122.
”nêr•F, gƒiƒmƒtƒHƒgƒfƒoƒCƒX‚É‚Þ‚¯‚½ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zph, “dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2012.
123.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚É‚¨‚¯‚éƒtƒ@ƒEƒ“ƒ_ƒŠƒT[ƒrƒX—˜—p‚̃Cƒƒnh, “dŽqî•ñ’ÊMŠw‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 1, 2013.
124.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 1,
2013.
125.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚Æ«—ˆ‚ÌŒõƒCƒ“ƒ^[ƒRƒlƒNƒVƒ‡ƒ“h, PST-net’è—á‰ïƒVƒ“ƒ|ƒWƒEƒ€, no. 2, 2013.
126.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚é‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ŒÃ‰Í“dH“Á•Êu‰‰‰ï, 2013.
127.
”nêr•F, gCMOSŒÝŠ·ƒvƒƒZƒX‚ð—p‚¢‚½ƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ƃiƒmƒtƒHƒgƒjƒNƒX‚Ìi“Wh, “dŽqî•ñ’ÊMŠw‰ïƒtƒHƒgƒjƒbƒNƒlƒbƒgƒ[ƒNŒ¤‹†‰ï, no. 1, 2013.
128.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zp‚É‚æ‚é’´¬Œ^E‚‘¬Œõ•Ï’²Šíh, “dŽqî•ñ’ÊMŠw‰ï’´‚‘¬ŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 1, 2013.
129.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒUƒAƒŒƒC‚ƃoƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, “d‹CŠw‰ïƒpƒ[ŒõŒ¹‚Æ‚»‚̉ž—p‹Zp’²¸ê–åˆÏˆõ‰ï, 2013.
130.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚̃oƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, ‰ž—p•¨—Šw‰ï—ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, 2013 .
131.
”nêr•F, gƒVƒŠƒRƒ“CMOSƒvƒƒZƒX‚ð—p‚¢‚½ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ƒfƒoƒCƒXWÏh, “dŽqî•ñ’ÊMŠw‰ïWÏŒõƒfƒoƒCƒX‚Ɖž—p‹ZpŒ¤‹†‰ï, no. 2, 2014
132.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuŠî‘b‚©‚ç‚æ‚•ª‚©‚éƒiƒm—̈æ‚ÌŒõŠwv, no. 5,
2014.
133.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 3, 2014.
134.
”nêr•F, "ƒtƒHƒgƒjƒbƒNƒiƒm\‘¢ƒfƒoƒCƒX‚Æ‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—p", •l¼ƒzƒgƒjƒNƒX“Á•ÊƒZƒ~ƒi[, 2014.
135.
”nêr•F, "”÷¬ŒõƒfƒoƒCƒX‚Æ‚Æ‚à‚É`Œ¤‹†Žº20”N", ‘æ7‰ñŠÖ“ŒŒõ‰ÈŠwŽáŽèŒ¤‹†‰ï, no. 4, 2014.
136.
”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚Æ‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—p", “ú–{ŠwpU‹»‰ï‘æ130ˆÏˆõ‰ï,
no. 3, 2014.
137.
”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»‚ð—p‚¢‚½‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒO‹Zp", JEITAƒwƒ‹ƒXƒPƒAƒfƒoƒCƒX¥ƒVƒXƒeƒ€‹Zp•ª‰È‰ï, no. 1, 2014.
138.
”nêr•F, "CMOSŒÝŠ·ƒvƒƒZƒX‚É‚æ‚éƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÆŒõWÏ‹Zp‚Ìi“W", –¼ŒÃ‰®‘åŠwVBLƒVƒ“ƒ|ƒWƒEƒ€,
no. 2-3, 2014.
139.
”nêr•F, "ƒtƒHƒgƒjƒbƒNŒ‹»‚̃oƒCƒI‰ž—p", ƒIƒvƒgƒƒjƒNƒXuƒoƒCƒIEˆã—Õª–ì‚ÅŠˆ–ô‚·‚éŒõƒfƒoƒCƒXvƒZƒ~ƒi[, no. MD3-2,
2014
140.
”nêr•F, g‘å‹K–̓iƒmƒŒ[ƒUƒAƒŒƒC‚ƃoƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, ƒŒ[ƒU[Šw‰ï, no. 11aI-1, 2015.
141.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 1,
2015.
142.
”nêr•F, ‹ß“¡Œ\—S, gƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg“±”g˜H‚Å‚ÌŒõ—U‹Nƒhƒbƒvƒ‰[ƒVƒtƒgh, ’´‚‘¬ŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, no. 10, 2015.
143.
”nêr•F, gƒiƒmƒŒ[ƒU‚É‚æ‚éˆã—Ã¥ƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, –k—¢‘åŠwƒoƒCƒIƒtƒHƒgƒjƒNƒXƒZƒ~ƒi[, no. 1, 2015.
144.
”nêr•F, ‰H’†“cËŽi, “n•”H,
‚‹´‘å’q, ŒÃ“c—TŽ÷,
“n粌h‰î, ˆ¢•”hŽm,
ŠÝ—mŽŸ, Žð–{^ˆß,
–kãÄ‘¾, gGaInAsP”¼“±‘̃fƒoƒCƒX‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒVƒ“ƒO^ƒCƒ[ƒWƒ“ƒOh, “dŽqî•ñ’ÊMŠw‰ïŒõƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï^MŠw‹Z•ñ, no. OME2015-70/OPE2015-136, 2015, pp. 31-16,
2015., 2015.
145.
”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒgƒfƒoƒCƒXh, “Œ–k‘åŠwE“d‹C’ÊMŒ¤‹†Šu ƒ}ƒ‹ƒ`ƒLƒƒƒŠƒAŒõ”g‚É‚æ‚éæi’ÊMEŒv‘ªƒVƒXƒeƒ€‚ÉŠÖ‚·‚錤‹†vŒ¤‹†‰ï, 2015.
146.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒX‚Ì’ÊM^ˆã—Éž—ph, “dŽqî•ñ’ÊMŠw‰ïŒõ’ÊMƒVƒXƒeƒ€Œ¤‹†‰ï, 2015.
147.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 3,
2016.
148.
”nêr•F, gƒiƒmƒŒ[ƒUƒoƒCƒIƒZƒ“ƒTh, “dŽqî•ñ’ÊMŠw‰ïŒõWσfƒoƒCƒXŒ¤‹†‰ï, 2016 .
149.
”nêr•F, gƒiƒmƒtƒHƒgƒjƒNƒXh, ”÷¬ŒõŠw“Á•ÊƒZƒ~ƒi[, no. 2-1, 2016.
150.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚ð—p‚¢‚½ƒoƒCƒIƒZƒ“ƒTh, æ’[Œõ—ÊŽq‰ÈŠwƒAƒ‰ƒCƒAƒ“ƒXƒZƒ~ƒi[iŒõ‰ÈŠwŠÖ˜A‚ÌÞ—¿EƒfƒoƒCƒXj, no. 2,
2016.
151.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚̃oƒCƒIƒZƒ“ƒVƒ“ƒO‰ž—ph, ‰ž—p•¨—Šw‰ï”÷¬ŒõŠwŒ¤‹†‰ï, no. 1, 2016.
152.
”nêr•F, g”¼“±‘Ì”Œõ‘fŽq‚É‚æ‚é‚Š´“xƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, •ªÍ‰ÈŠw‰ï“¢˜_‰ï, no. B2011, 2016.
153.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»ƒiƒmƒŒ[ƒU‚É‚æ‚éƒoƒCƒIƒZƒ“ƒT[h, “ú–{^‹óŠw‰ïE“ú–{•\–ʉȊw‰ï‡“¯Œ¤‹†‰ï, no. 5, 2017.
154.
”nêr•F, gGaInAsP”¼“±‘Ì”ŒõƒfƒoƒCƒX‚É‚æ‚éƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, “d‹CŠw‰ïƒGƒŒƒNƒgƒƒoƒCƒIƒƒW[’²¸ê–åˆÏˆõ‰ï, no. 1, 2017.
155.
”nêr•F, gŒõ–³ü‹‹“d‚É‚æ‚éƒiƒmƒŒ[ƒU[‚ƃoƒCƒIƒZƒ“ƒT‰ž—ph, ‰ž—p•¨—Šw‰ï”÷¬ŒõŠwŒ¤‹†‰ï, no. 9, 2017.
156.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‹Zp‚ð—p‚¢‚½ƒXƒ[ƒ‰ƒCƒgLiDAR‚ÌŒŸ“¢h, “ú–{ŠwpU‹»‰ï‘æ130ˆÏˆõ‰ï, 2017.
157. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 4, 2018.
158. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éƒoƒCƒIƒZƒ“ƒVƒ“ƒOh, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«Œ¤‹†‰ï, 2018.
159. ”nêr•F, gƒXƒ[ƒ‰ƒCƒg\‘¢‘Ì‚ð—˜—p‚µ‚½”ñ‹@ŠBŽ®ƒnƒCƒŒƒ]ŒõƒŒ[ƒ_[‚ÌŠJ”h, ƒIƒvƒgƒƒjƒNƒXƒZƒ~ƒi[, no. 5, 2018.
160. ”nêr•F, gƒXƒ[ƒ‰ƒCƒg\‘¢‚ð—p‚¢‚½ŒõƒŒ[ƒ_[h, “dŽqî•ñ’ÊMŠw‰ïƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 8, 2018.
161. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒXƒ[ƒ‰ƒCƒgLiDARŠJ”h,
ŠÖ¼“dŽqH‹ÆU‹»ƒZƒ“ƒ^[ƒZƒ~ƒi[, no. 2, 2018.
162.
”nêr•F, gƒXƒ[ƒ‰ƒCƒg‹Zp‚ð—p‚¢‚½¬Œ^LiDAR‚ÌŠJ”‚Æ‘ª‹—‹Zph, ‹Zpî•ñ‹¦‰ïuŽÔÚƒZƒ“ƒT\vuK‰ï, 2018.
163.
”nêr•F, gƒXƒ[ƒ‰ƒCƒg`’x‚¢Œõ‚Å“¾‚ç‚ê‚é‹ZpŠvV`‚¸×3ŽŸŒ³‹óŠÔ”FŽ¯‚ւ̉ž—ph, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 1, 2019.
164.
”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 4,
2019.
165.
—‘q—z‰î, VˆäG”V, ”nêr•F,
g¬Œ^SiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg•Ï’²Ší‚Ì64 Gbps“®ìh,
“dŽqî•ñ’ÊMŠw‰ïƒŒ[ƒUE—ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, 2019.
166.
”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg•ÎŒüŠí‚ÆLiDARŠJ”h, ‰ž—p•¨—Šw‰ïŒõ”gƒZƒ“ƒVƒ“ƒO‹ZpŒ¤‹†‰ï, 2019.
167.
”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXLiDAR‚ÌŠJ”h,
“dŽqî•ñ’ÊMŠw‰ïƒ\ƒTƒCƒGƒeƒB‘å‰ï, 2019.
168. ”nêr•F, gƒXƒ[ƒ‰ƒCƒg`’x‚¢Œõ‚Å“¾‚ç‚ê‚é‹ZpŠvV`‚¸×3ŽŸŒ³‹óŠÔ”FŽ¯‚ւ̉ž—ph, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, no. 1,
2019.
169. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, no. 4, 2019.
170. —‘q—z‰î, VˆäG”V,
”nêr•F, g¬Œ^SiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg•Ï’²Ší‚Ì64 Gbps“®ìh, “dŽqî•ñ’ÊMŠw‰ïƒŒ[ƒUE—ÊŽqƒGƒŒƒNƒgƒƒjƒNƒXŒ¤‹†‰ï, 2019.
171. ”nêr•F, gSiƒtƒHƒgƒjƒbƒNŒ‹»ƒXƒ[ƒ‰ƒCƒg•ÎŒüŠí‚ÆLiDARŠJ”h,
‰ž—p•¨—Šw‰ïŒõ”gƒZƒ“ƒVƒ“ƒO‹ZpŒ¤‹†‰ï, 2019.
172. ”nêr•F, gƒ\ƒŠƒbƒhƒXƒe[ƒgLiDAR‚ÌŠJ”h, S&To”ÅLiDAR‚ÌŒ»Ý‚Æ“W–]ƒZƒ~ƒi[, 2019.
173. ”nêr•F, ˆ¢•”hŽm,
‘q‹´—È, ˆÉ“¡Š°”V,
‹ÊŠÑŠx³, gƒXƒ[ƒ‰ƒCƒg“±”g˜H‚É‚æ‚é”ñ‹@ŠBŽ®ƒr[ƒ€ƒXƒeƒAƒŠƒ“ƒO‚ÆLiDAR‰ž—ph,
“dŽqî•ñ’ÊMŠw‰ïPICS/OPE/LQEŒ¤‹†‰ï, 2019.
174. ”nêr•F, g¢ŠE‚̃‰ƒCƒ_[“®Œü‚ƃXƒ[ƒ‰ƒCƒgƒ‰ƒCƒ_[‚ÌŠJ”h, ‰ÈŠw‹ZpU‹»‹@\ƒ[ƒNƒVƒ‡ƒbƒvuŒõ‹Zp‚̘ëáÕv, 2019.
175. ”nêr•F, g‚Í‚¶‚ß‚Éh, ƒŒ[ƒU[Šw‰ï”NŽŸ‘å‰ï, 2020 (µ‘Òu‰‰).
176. ”nêr•F, gSiƒtƒHƒgƒjƒNƒX‚ð—p‚¢‚½ƒXƒ[ƒ‰ƒCƒgLiDARh, ƒCƒ“ƒ^[ƒIƒvƒgOITDƒZƒ~ƒi[uŽ©“®‰^“]‚ÉŒü‚¯‚½Œõ‹Zpv, 2020.
177. ”nêr•F, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXh, “ú–{ƒIƒvƒgƒƒJƒgƒƒjƒNƒX‹¦‰ï‹ZpuÀuƒiƒm—̈æ‚ÌŒõŠw“ü–åv, 2020.
178. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXLiDAR‚ÌŠJ”h, ‰ž—p•¨—Šw‰ï‰ž—p“dŽq•¨«•ª‰È‰ïŒ¤‹†‰ï, 2020.
179. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ð—p‚¢‚½ƒ\ƒŠƒbƒhƒXƒe[ƒgƒ‰ƒCƒ_[‚Ö‚Ì’§íh, ƒŒ[ƒUƒZƒ“ƒVƒ“ƒOƒVƒ“ƒ|ƒWƒEƒ€, 2020.
180. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒXƒ[ƒ‰ƒCLiDAR‚ÌŠJ”h, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïŽ©“®ŽÔEƒ‚ƒrƒŠƒeƒBƒtƒHƒgƒjƒNƒXŒ¤‹†‰ï, no. 1, 2020.
181. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÆLiDAR‰ž—ph, ‘åã‰ÈŠw‹ZpƒZƒ“ƒ^[ƒtƒHƒgƒjƒNƒX‹ZpƒtƒH[ƒ‰ƒ€‚ÌŒ¤‹†‰ï, 2020.
182. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚Ìi“Wh, ƒGƒŒƒNƒgƒƒjƒNƒXŽÀ‘•Šw‰ïŒõ‰ñ˜HŽÀ‘•‹ZpŒ¤‹†‰ï, no. 1, 2021.
183. ”nêr•F, gŽ©“®‰^“]Cƒƒ{ƒbƒg“™‚ւ̉ž—p‚ð–ÚŽw‚·ƒZƒ“ƒT`ØŽèƒTƒCƒYLiDAR‚ÌŽÀŒ»‚ÉŒü‚¯‚Ä`h, ‚Æ‚¿‚¬ŒõŽY‹ÆU‹»‹¦‹c‰ïu‰‰‰ï, 2021.
184. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ƃXƒ[ƒ‰ƒCƒg‚ð—˜—p‚µ‚½FMCW LiDARŠJ”h, “ú–{ŒõŠw‰ïHŠwÝŒvƒOƒ‹[ƒvŒ¤‹†‰ï, 2021
185. ”nêr•F, gLiDAR‚Ì‹Zp“®Œü‚ƃIƒ“ƒ`ƒbƒvLiDAR‚ÌŠJ”h, Œõ’ÊM‹Zp“WiFOEjê–å‹ZpƒZƒ~ƒi,
2021.
186. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXSolid-State LiDARŠJ”h,
ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒtƒHƒgƒjƒbƒNƒfƒoƒCƒXE‰ž—p‹ZpŒ¤‹†‰ï, 2021.
187. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXƒIƒ“ƒ`ƒbƒvFMCW LiDAR‚Ö‚Ì’§íh,
‰f‘œî•ñƒƒfƒBƒAŠw‰ïî•ñƒZƒ“ƒVƒ“ƒOŒ¤‹†‰ï, 2021.
188. ”nêr•F, gƒXƒ[ƒ‰ƒCƒgLiDARh,
ŽŸ¢‘ã‰æ‘œ“ü—̓rƒWƒ‡ƒ“ƒVƒXƒeƒ€•”‰ï, 2022.
189. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ÆLiDAR‚ÌÅV“®Œüh, ŒõŽY‹Æ‹ZpU‹»‹¦‰ïƒ}ƒ“ƒXƒŠ[ƒZƒ~ƒi[, 2022.
190. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒbƒNŒ‹»‚É‚æ‚éŒõWÏ‹Zp‚ÆLiDAR‰ž—ph, ŠwUŽYŠw‹¦—͈ψõ‰ïR025æi”––ŒŠE–Ê‹@”\‘n¬ˆÏˆõ‰ï, 2022.
191. T. Baba,
gFMCW LiDAR incorporating slow light beam scannersh, Science Salon, 2022.
192. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒõWÏŒ^FMCW LiDAR‚ÌŠJ”h, ƒIƒvƒgƒƒjƒNƒXŒõ‚ƃŒ[ƒU[‚̉Ȋw‹ZpƒtƒFƒAƒZƒ~ƒi[, no. 4, 2023.
193. ”nêr•F, gƒVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒXŒõWσvƒ‰ƒbƒgƒtƒH[ƒ€‚ÆLiDAR‰ž—ph,
ƒGƒŒƒNƒgƒƒjƒNƒXŽÀ‘•Šw‰ïi‚i‚h‚d‚oj“dŽq•”•iEŽÀ‘•‹ZpˆÏˆõ‰ïu‰‰‰ï, no. 4,
2023.
194. ”nêr•F, gƒCƒ“ƒtƒHƒ}ƒeƒBƒNƒX‹Zp‚É‚æ‚éƒtƒHƒgƒjƒNƒXƒfƒoƒCƒX‚ÌÅ“K‰»h, i‰»ŒvŽZƒVƒ“ƒ|ƒWƒEƒ€, 2023.
“Á‹–
1. š •ª‘×—Y, ”nêr•F, årl, ˆÉ‰êŒ’ˆê, gÏ‘wŒõ“±”g˜Hh, “Á‹–1828299.
2. š •ª‘×—Y, ”nêr•F, ˆÉ‰êŒ’ˆê, gŒõ•ª”gŽóŒõWωñ˜Hh, “Á‹–1828303.
3.
”nêr•F, š •ª‘×—Y, •Ä—ÇN•F,
gƒXƒgƒ‰ƒCƒvŒõ‰¡•Â‚¶ž‚ß–@h, “Á‹–2879849.
4. ”nêr•F, š •ª‘×—Y, gŒõ“±”g˜Hh, “Á‹–2728421.
5.
š •ª‘×—Y, “c‘ºCˆê, ”nêr•F,
gƒoƒCƒAƒXƒXƒpƒbƒ^h, “Á‹–2787956.
6.
ˆÉ‰êŒ’ˆê, ”nêr•F, ²X–ØÊŽq,
g–³’²®ŒõƒRƒlƒNƒ^h, “Á‹–2615400i1997”N3ŒŽ11“új.
7.
T. Baba and T. Tani, gOptical elementh, US
Patent no: US 6522448 B2, Feb. 18, 2003.
8.
T. Baba, A. Matsuzono, A. Furukawa, S. Sasaki
and M. Hoshi, gSurface emitting semiconductor laser and method for
manufacturing thereof as well as optical deviceh, US Patent, no. 10/977,197,
2004.
9. ”nêr•F, g”÷¬Œõ‰ñ˜H‘•’uh, “Á‹–3737595i2005”N11ŒŽ4“új.
10.
T. Baba and D. Mori, gOptical control elementh,
US Patent, no. 7,123,804, Oct. 17, 2006.
11. ”nêr•F, ’J•°, gŒõ‘fŽqh, “Á‹–3923244i2007”N3ŒŽ2“új.
12.
T. Sakai, I. Katoh and T. Baba, Optical Control
Deviceh, US Patent No. 7,369,734, May 6, 2008.
13. ”nêr•F, ’J•°, gŒõ•ÎŒü‘fŽqh, “Á‹–4128382i2008”N5ŒŽ23“új.
14. âˆä“Ä, ‰Á“¡Šô—Y, ‘DŒËL‹`, ”nêr•F, gŒõ’x‰„‘fŽqh, “Á‹–4208754i2008”N10ŒŽ31“új.
15. âˆä“Ä, ‰Á“¡Šô—Y, ”nêr•F, gŒõ§Œä‘fŽqh, “Á‹–4278597(2009”N3ŒŽ19“ú)@.
16. âˆä“Ä, ‰Á“¡Šô—Y, ”nêr•F, X‘å—S, gŒõ§Œä‘fŽqh, “Á‹–4327064i2009”N6ŒŽ19“új.
17.
‰¡“à‘¥”V, Šì£’q•¶, ”nêr•F,
g”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»“±”g˜H\‘¢‹y‚Ñ‚»‚ê‚ðŽg—p‚µ‚½”¼“±‘̃tƒHƒgƒjƒbƒNŒ‹»ƒfƒoƒCƒXh, “Á‹–4349489i2009”N7ŒŽ31“új.
18. âˆä“Ä, ‰Á“¡Šô—Y, ‘DŒËL‹`, ”nêr•F, gŒõ§Œä‘fŽqh, “Á‹–4372588i2009”N9ŒŽ11“új
19. ”nêr•F, ‰Á“¡Šô—Y, âˆä“Ä, ‘DŒËL‹`, gŒõ§Œä‘fŽqh, “Á‹–4372589i2009”N9ŒŽ11“új.
20. ”nêr•F, ‰Á“¡Šô—Y, âˆä“Ä, ‘DŒËL‹`, gŒõ§Œä‘fŽqh, “Á‹–4381859i2009”N10ŒŽ2“új.
21. ”nêr•F, X‘å—S, gŒõ§Œä‘fŽqh, “Á‹–4398275i2009”N10ŒŽ30“új.
22. âˆä“Ä, ‰Á“¡Šô—Y, ‘DŒËL‹`, ”nêr•F, gŒõ§Œä‘fŽqh, “Á‹–4426353i2009”N12ŒŽ18“új
23.
T. Baba, A. Matsuzono, A. Furukawa, S. Sasaki
and M. Hoshi, gMethod for manufacturing surface-emitting semiconductor laserh,
US Patent, no. 7,678,598 B2, March 16, 2010.
24.
”nêr•F, Šì£’q•¶, gŒõŠw‘fŽqCŒõŠw‘fŽq‚Ö‚ÌŒõ‚Ì“üŽË•û–@C‹y‚ÑCƒX[ƒp[ƒvƒŠƒYƒ€h, “Á‹–4535373i2010”N6ŒŽ25“új.
25.
K. Kiyota and T. Baba, gPhotonic crystal
deviceh, US Patent, no. 7,831,124, Nov. 9, 2010.
26.
”nêr•FC¼‰€~ŽjCŒÃ‰Íº•vC²X–Ø’qC¯Œõ¬Ch–Ê”Œõ”¼“±‘̃Œ[ƒU‹y‚ÑŒõŠw‘•’uh, Chinese Patent, no.
ZL200410100546.0, Nov. 24, 2010.
27.
ŒÃ캕v,”nêr•F, ¼‰€~Žj,²X–Ø’q, ¯Œõ¬,
g–Ê”Œõ”¼“±‘̃Œ[ƒU‚Æ‚»‚Ì»‘¢•û–@‹y‚ÑŒõŠw‘•’uh, “Á‹–4641736i2010”N12ŒŽ10“új.
28.
”nêr•F, –ì茪Œå, –kãÄ‘¾,
g‹üÜ—¦ƒZƒ“ƒT‚¨‚æ‚Ñ‹üÜ—¦‘ª’è‘•’uh, “Á‹–‘æ4867011†i2011”N11ŒŽ25“új.
29. âˆä“Ä, ”nêr•F, gŒõ§Œä‘fŽqh, “Á‹–‘æ4971045†i2012”N4ŒŽ13“új@
30.
T. Baba, A. Matsuzono, A. Furukawa, S. Sasaki
and M. Hoshi, gSurface emitting semiconductor laser and method for
manufacturing thereof as well as optical deviceh, Korean Patent, no.
10-1180377, Aug. 31, 2012.
31.
”nêr•F, “nç²G‹P, ‰¡ŽRŒ\—C,
g”¼“±‘̃Œ[ƒUh, “Á‹–‘æ5152721†i2012”N12ŒŽ14“újD
32.
”nêr•F, •—ŠÔ‘ñ–ç, g”¼“±‘Ì”ŒõƒfƒoƒCƒXh, “Á‹–5186093i2013”N1ŒŽ25“új.
33.
T. Baba, A. Matsuzono, A. Furukawa, S. Sasaki
and M. Hoshi, gSurface emitting semiconductor laser and method for
manufacturing thereof as well as optical deviceh, European Patent No. 1528647,
Sept. 26, 2013.
34.
”nêr•F, Αq“¿—m, ˆÉ“¡Š°”V,
"‘½ƒ‚[ƒhŠ±ÂŒõƒJƒvƒ‰", “Á‹–‘æ5979653†i2016”N8ŒŽ5“új
35. ”nêr•F, Αq“¿—m, ‘ì—Á, gŒõ‘ŠŠÖŒvh, “Á‹–‘æ6041264†i2016”N11ŒŽ18“új
36. ”nêr•F, ‹ß“¡Œ\—S, gŒõ‘ŠŠÖŠíh, “Á‹–‘æ6585410†i2019”N9ŒŽ13“új
37.
”nêr•F, ‹ß“¡Œ\—SAˆ¢•”hŽm,
gŒõŽóMŠíƒAƒŒƒCA‹y‚у‰ƒCƒ_[‘•’uh, ’†‘“Á‹–ZL201880034741.8i2020”N11ŒŽ3“új
38. ”nêr•F, ¬ŽR“ñŽO•v, gŒõ•ÎŒüƒfƒoƒCƒX‚¨‚æ‚у‰ƒCƒ_[‘•’uh,“Á‹–‘æ6879561†i2021”N5ŒŽ7“új
39.
T. Baba, F. Koyama, gOptical deflection device
and LiDAR apparatush, ƒhƒCƒc“Á‹–60 2017 033
828.1i2021”N5ŒŽ7“új
40.
”nêr•F, ’|“à–G], gŒõ•ÎŒüƒfƒoƒCƒXh,
“Á‹–‘æ6883828†i2021”N5ŒŽ13“újD
41.
T. Baba, F. Koyama, gOptical deflection device
and LiDAR apparatush, US Patent 11,079,541i2021”N8ŒŽ3“új
42.
”nêr•F, ’|“à–G], ’|“àŒæ˜N,
gŒõ•ÎŒüƒfƒoƒCƒXA‹y‚у‰ƒCƒ_[‘•’uh, “Á‹–‘æ6931237†i2021”N8ŒŽ17“új.
43.
”nêr•F, ˆ¢•”hŽm, ˆÉ“¡Š°”V,
gŒõ•ÎŒüƒfƒoƒCƒXC‹y‚у‰ƒCƒ_[‘•’uh, “Á‹–‘æ6942333†i2021”N9ŒŽ10“új.
44.
”nêr•F, ’|“à–G], ˆÉ“¡Š°”V,
gŒõ•ÎŒüƒfƒoƒCƒXh, “Á‹–‘æ6945816†i2021”N9ŒŽ17“új.
45.
”nêr•F, ¼ŽRL•F, gŒõ•ÎŒüƒfƒoƒCƒX‚¨‚æ‚у‰ƒCƒ_[‘•’uh, “Á‹–‘æ6956964†i2021”N10ŒŽ8“új.
46.
”nêr•F, ¬ŽR“ñŽO•v, gŒõ•ÎŒüƒfƒoƒCƒX‚¨‚æ‚у‰ƒCƒ_[‘•’uh, ’†‘‘‰Æ’mŽ¯ŽYŒ ‹Ç2018083100503980 (2021”N10ŒŽ22“ú)
47.
”nêr•F, ‹ß“¡Œ\—S, ˆ¢•”hŽm,
gŒõŽóMŠíƒAƒŒƒCC‹y‚у‰ƒCƒ_[‘•’uh,
“Á‹–‘æ7076822†i2022”N5ŒŽ20“új
48.
”nêr•F, ’|“à–G], ˆÉ“¡Š°”V,
“í˜Ð^, gŒõ•ÎŒüƒfƒoƒCƒXh,
’†‘“Á‹–no. ZL201880062107.5i2022”N7ŒŽ5“új
49.
”nêr•F, ’|“àŒæ˜N, ’|“à–G],
Ž›“c—z—S, gŒõ•ÎŒüƒfƒoƒCƒXh,
“Á‹–‘æ7134441†i2022”N9ŒŽ2“új.
50.
”nêr•F, ’|“à–G], ˆÉ“¡Š°”V,
“í˜Ð^, gŒõ•ÎŒüƒfƒoƒCƒXh, “Á‹–‘æ7134443†i2022”N9ŒŽ2“új
51.
T. Baba and N. Nishiyama, gOptical deflection
device and LiDAR apparatush, US Patent no. 11,448,729 Filed on Sept. 20,
2022.
ŽóÜ
1.
’O‰H‹L”OÜ, ˜_•¶ gMonolithic integration of ARROW-type
demultiplexer and photodetector in shorter wavelength regionh, IEEE/OSA J.
Lightwave Technol., vol. LT-8, no. 1, pp. 99-104, 1990, ‚»‚Ì‘¼‚Ì‹Æтɑ΂µ‚Ä, “Œ‹ž,
1991”N2ŒŽ28“ú.
2.
Best Paper Award of Microoptics
Conf./Topical Meeting of Gradient Index Optical Systems '93, gRoom temperature
continuous wave lasing characteristics of GaInAsP/InP surface emitting laserh,
Kawasaki, October 22, 1993.
3.
“dŽqî•ñ’ÊMŠw‰ïŠwp§—ãÜ, t‹G“dŽqî•ñ’ÊMŠw‰ï‘S‘‘å‰ï, u‰‰‘è–Úh1.3mm‘Ñ•½’R‰~Œ`–„‚ßž‚Ý\‘¢–Ê”ŒõƒŒ|ƒU‚̒Ⴕ‚«‚¢’lŽº‰·ƒpƒ‹ƒX”U‚ƘA‘±“®ì‰·“x‚ÌŒüãh, no. C-154, 1993C‚ɑ΂µ‚ÄC“Œ‹žC1994”N3ŒŽ27“ú.
4.
“dŽqî•ñ’ÊMŠw‰ï˜_•¶Ü, gFirst room
temperature cw operation of GaInAsP/InP surface
emitting laserh, IEICE Trans. Electron., vol. E76-C, no. 9, pp. 1423-1424,
1993. ‚ɑ΂µ‚Ä, “Œ‹ž, 1994”N5ŒŽ14“ú.
5.
Best Paper Award of Microoptics
Conf. e99, gFirst successful fabrication and evaluation of 2-dimensional
photonic crystal waveguides with bendsh, Makuhari,
July 16, 1999.
6.
ŠÛ•¶Œ¤‹†§—ãÜ, ƒ}ƒCƒNƒ\‘¢ŒõƒfƒoƒCƒX‚ðŠî–{‚Æ‚·‚éƒtƒHƒgƒjƒbƒNWÏŽè–@‚ÌŠJ‘ñ, “Œ‹ž, 2000”N3ŒŽ9“ú.
7.
IEICE International Distinguished Lecture Award
at Taiwan Chapter, gPhotonic crystals and high index contrast structuresh,
Taipei, December 25, 2004
8.
“ú–{ŠwpU‹»‰ïÜ, gƒtƒHƒgƒjƒbƒNŒ‹»‚ƃVƒŠƒRƒ“ƒtƒHƒgƒjƒNƒX‚ðŠî”Õ‚Æ‚·‚éƒiƒm\‘¢ŒõƒGƒŒƒNƒgƒƒjƒNƒXh, “Œ‹ž, 2006”N3ŒŽ9“ú.
9.
“dŽqî•ñ’ÊMŠw‰ï˜_•¶Ü, gSi×ü“±”g˜Hh, “dŽqî•ñ’ÊMŠw‰ï˜_•¶Ž, vol. J88-C,
no. 6, pp. 363-373, 2005 ‚ɑ΂µ‚Ä, “Œ‹ž, 2006”N5ŒŽ27“ú
10.
‰¡•l‘—§‘åŠw”–¾Šw’·Ü, gŒõ”gƒVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“ƒvƒƒOƒ‰ƒ€‚Ì‘nì‚Æ‚±‚ê‚ð—p‚¢‚½ŒõƒfƒoƒCƒX‚Ì‹ZpˆÚ“]h, ‰¡•l, 2007”N4ŒŽ20“ú
11.
IEEE/LEOS Distinguished Lecture Award, gState-of-the-art
photonic nanostructure devicesh, Florida, October 22, 2007.
12.
“dŽqî•ñ’ÊMŠw‰ïƒGƒŒƒNƒgƒƒjƒNƒXƒ\ƒTƒCƒGƒeƒBÜ, 2011”N9ŒŽ14“ú
13. ”÷¬ŒõŠw‘Û‰ïMOC2011Å—DG˜_•¶Ü, 2011”N11ŒŽ2“ú
14. Žs‘ºŠwpÜiŒ÷ÑÜj, 2012”N4ŒŽ27“ú
15.
IEEEŽl‘°”¼“±‘Ì‘Û‰ï‹cÅ—DGƒ|ƒXƒgƒfƒbƒhƒ‰ƒCƒ“˜_•¶Ü, 2012”N8ŒŽ31“ú
16.
‰ž—p•¨—Šw‰ïƒ|ƒXƒ^[Ü, 2013”N3ŒŽ29“ú
17.
Best Paper Award for Conference on Laser and
Electro-Optics Pacific Rim, 2013”N7ŒŽ3“ú
18.
‰ž—p•¨—Šw‰ïƒ|ƒXƒ^[ÜC2016”N3ŒŽ20“ú
19. •¶•”‰ÈŠw‘åb•\²‰ÈŠw‹ZpÜC2016”N4ŒŽ20“ú
20. “dŽqî•ñ’ÊMŠw‰ïƒGƒŒƒNƒgƒƒjƒNƒXƒ\ƒTƒCƒGƒeƒBµ‘Ò˜_•¶Ü, 2018”N9ŒŽ12“ú
21.
•Ä‘ŒõŠw‰ïOPTICAƒtƒFƒ[, 2022”N1ŒŽ1“ú
22.
•Ä‘“d‹C“dŽqŠw‰ïIEEEƒtƒFƒ[, 2022”N1ŒŽ1“ú
23.
‰ž—p•¨—Šw‰ïƒtƒFƒ[, 2022”N9ŒŽ20“ú
24.
Ž‡Žø–JÍ, 2024”N4ŒŽ29“ú