Journal
papers, international conferences and books
(pdf files can be
downloaded based on each society
policy.) baba
2023
2022
2021 2020
2019 2018
2017201620152014 2013
2012 2011 2010 2009 2008 2007 2006 2005 2004 2003
2002 2001 2000 1999 1998 1997 1996 1995
2024
1.
M. Kamata, T. Tamanuki, R. Kubota, and T. Baba,
“Ambient light immunity of frequency-modulated
continuous-wave (FMCW) LiDAR chip”, Opt. Express, vol. 32, no. 3, pp.
3997-4012, 2024.
2.
S. Yamazaki, T. Tamanuki, H. Ito, R. Kubota and
T. Baba, “Silicon FMCW LiDAR chip integrated with SLG beam scanner and k-clock
interferometer for operation with wavelength-swept laser source”, Opt. Express,
vol. 32, no. 12, pp. 21191-21199, 2024.
3.
H. X. Dinh, A. Balčytis1, T. Ozawa, Y. Ota, G.
Ren, T. Baba, S. Iwamoto, A. Mitchell, and T. G. Nguyen, “Reconfigurable
synthetic dimension frequency lattices in an integrated lithium niobate ring
cavity”, Commun. Phys., vol. 7, no. 185, 2024.
4.
T. Baba, “On-chip LiDAR sensor with slow-light scanner
and swept laser source”, SPIE Photonics West, San Francisco, no. 12912-60,
2024. (Invited).
5.
K. Kawahara, T. Tsuchizawa,
N. Yamamoto, Y. Maegami, K. Yamada and T. Baba,
“59-fJ/bit Si photonic crystal slow-light modulator with finFET-compatible
driving voltage”, Opt. Fiber Commun. Conf., San
Diego, no. M2D.5, 2024.
6.
K. Kawahara and T. Baba, “DAC- and DSP-free
optical transmitter based on triple-parallel Si Mach-Zehnder modulators”, IEEE
Si Photon. Conf., Tokyo, no. WA3, 2024.
7.
N. Tahara, R. Taira,
Y. Maegami, T. Tsuchizawa,
N. Yamamoto, K. Yamada, and T. Baba, “Fabrication of efficient Si fiber coupler
with a meta structure of 150 nm minimum feature
size”, IEEE Si Photon. Conf., Tokyo, no. WC4, 2024.
8.
S. Yamazaki, T. Tamanuki, M. Kamata and T.
Baba, “K-clock interferometer-integrated Si photonics SLG FMCW LiDAR”, IEEE Si
Photon. Conf., Tokyo, no. WB4, 2024.
9.
Y. Maeda, Y. Ebiko, H. Terada, R. Tetsuya, S.
Maeda, Y. Yasu, T. Tamanuki, M. Kamata, K. Hirotani, S. Suyama, K. Yamamoto, S.
Nawa, R. Kubota, T. Baba, "High-resolution and compact integrated
FMCW-LiDAR chip with 128 channels of slow light grating antennas," VLSI Sympo., no. JFS5.3, Hawaii, 2024.
10.
T. Baba, “Nonmechanical slow-light grating
scanner loaded Si photonics FMCW LiDAR”, IEEE Int. Conf. Transparent Opt.
Networks, Bari, 2024 (Invited).
11.
H. X. Dinh, A. Balcytis, T Ozawa, Y. Ota, T.
Baba, S. Iwamoto, A. Mitchell, and T. Nguyen, "Observation of
Su-Schrieffer-Heeger topological model band structure in integrated LNOI
coupled ring cavities," Conf. Laser and Electro-Opt. Pacific Rim, no.
Mo1D-2, Incheon, 2024.
12.
A. Balcytis, X. H. Dinh, T. Ozawa, Y. Ota, T.
Baba, S. Iwamoto, A. Mitchell and T. Nguyen, “Photonic frequency space
simulation of tight-binding lattices using integrated LNOI ring resonators”, Conf. Laser and Electro-Optics Pacific Rim,
no. We2D-5, Incheon, 2024.
13.
T. Baba and T. Tamanuki, “On-chip LiDAR with
slow-light beam scanner and wavelength-swept source”, Conf. Laser and
Electro-Optics Pacific Rim, Incheon, no. Th1D-1, 2024 (Invited).
14.
R. Zhang, L. Li, M. Kamata, T. Baba, T. Ozawa,
Y. Ota, and S. Iwamoto, “Measurement of synthetic-dimension band structures in
silicon coupled ring resonators”, Conf. Laser and Electro-Optics Pacific Rim,
no. Fr2F-2, Incheon, 2024.
15.
T. Baba, “Silicon photonics and its application
to LiDAR”, JSAP Autum Meet., no. 17p-A25-1, 2024. (Optica
Special Lecture)